Fisheries and Oceans Canada

Are Canadian Pacific groundfishes shifting their distribution in response to local climate velocities?

Philina English, Sean Anderson, Eric Ward²,

Brendan Connors, Andrew Edwards, Robyn Forrest, Karen Hunter, Chris Rooper

October 24, 2019

²National Oceanographic and Atmospheric Administration

Trawl survey data

- biennial coverage of Canada's Pacific waters
 - commercial trawl footprint overlaid (in grey)
- o random depth-stratified
- o size, age, sex for all species caught

species' biomass estimated using a Tweedie distribution in the R package github.com/pbs-assess/sdmTMB

Time scale of climate

Survey sensor-based models

(conditions at time of survey)

> movement & short-term settlement

Long-term historical

(seasonal & interannual variability)

> survival & productivity

Future projections

> speed and direction an organism would need to move to maintain current climate conditions

Low velocity

Little temporal change

OR

Change occurring in a heterogenous environment

Higher velocity

Larger change

OR

Change occurring in spatially homogenous environment

(Brito-Morales et al. 2018 in Trends in Ecol & Evol)

Defining analogous climate: choose a threshold

Range can be subjectively chosen or derived from past climate variability.

Defining analogous climate: asymmetrical threshold

Still must choose a maximum threshold that defines "analogous" climate.

All 0.5 °C vectors for portion of west coast Vancouver Island

2010 Bottom Temperature

Velocities can be left general

OR

Informed by species characteristics

- limit vector lengths to max dispersal distances
- > filter based on species occurrence/abundance
- define analogous climate based on physiological response curves

2008-2010 vectors

2008 Pacific Ocean Perch biomass (kg/ha)

Species-specific sensitivities

We built species distribution models with quadratic effects of temperature, DO and depth

Filter for only vectors crossing 50% threshold

Can also create vectors of change based on breadth of curve

(eg. 75% threshold - 25% threshold)

2008

2009

2010

20112012

2013

2014

2015

20162017

2018

Species-specific vectors

Pacific Cod biomass in 2008 + vectors illustrate movement that limits temperature increase to < 0.5 °C in 2010

all vectors

vectors accounting for 95% of biomass

vectors exceeding sensitivity threshold

Species-specific vectors

Pacific Cod biomass in 2008 + vectors that limit temperature increase to < 0.5 °C in 2010

Climate Pressure Score:

biomass weighted sum of vector lengths

e.g. Pacific Cod 2010 score = 0.5

vectors illustrating movement to limit increase in temperature to < 0.5 $^{\circ}C$

vectors illustrating movement to limit increase in temperature to < 0.5 °C

vectors illustrating movement to limit decline in DO to $< 0.2 \ ml/L$

Statistical approach...

Biomass change ~

- o cells with vectors vs. matched cells without
- o cells at the heads vs. tails of vectors

Meta-analysis across years, species & age classes

So far we don't see consistent patterns... why?

