Impacts of **Environmentally-Relevant Concentrations of Polypropylene** Microplastic fibers on Pacific Mole Crab (Emerita analoga) **Development and Lifespan**

Dorothy Horn, Elise Granek and Clare Steele

- Mega plastics are those > 100mm
- Macro plastics are those 20 - 100mm
- Meso plastics are those 5 20mm
- Microplastics are those < 5 mm

 Nano-plastics are those < 1um

Microplastic types

Plastic particles and fibers less than 5 mm – 0.001 mm

Primary microplastics Manufactured microbeads, nurdles

Secondary microplastics Fragments of larger items

Microbeads (Scrub)

Microbeads (Detergent)

Nurdles (Pellets)

Plastic fragments

Tire dust

Microfibers (clothing)

Microfibers

https://www.earth.com/news/microfibers-clothing-polluting-oceans/

MICROFIBER CONTAMINATION

Sea Salt

1.5 mm microfiber from Atlantic Ocean sourced sea salt.

Beer

1 mm microfiber from brewery drawing water from Lake Erie.

2.5 mm microfiber from U.S. tap water sample.

1 fleece jacket ~250,000 fibers released per load

WASH, C. (2015). Featured products

2018 Kosuth et al, PLOS One

Where does the plastic go?

North American Study Sites

Oregon and California, US

Collected Sand: Marin County to San Diego - California Microplastics in sand (n = 51 beaches):

- 200ml of sand was collected from each beach & dried
- supernatant filtered through 1.6 µm glass fiber filters
- categorized visually by color & type – then tested using FTIR

Microfiber in sand

- Highly abundant sandy beach invertebrate
- Filter feeders

Microfiber in Pacific mole crab:

Ingest microplastics (Horn et al, 2019 Marine Pol. Bul)

Pacific mole crab (Emerita analoga)

Give Dorothy Crabs

California

Sand Crab Collection Sites

Horn et al 2019

Microplastics: Common Across California

California Results

Horn et al, 2019

Oregon, US Collection Sites

- (n = 19 beaches):
 - 100ml of sand was collected from each beach & dried
 - supernatant filtered through 1.6 µm glass fiber filters
 - Plastic Identification by Nile Red fluorescence (Hidalgo-Ruz et al. 2012, Shim et al. 2016, Wiggin & Holland 2019)

Horn et al, in review (Limnology and Oceanography Letters)

Fibers and Particles in Oregon Sand

Number of Fibers and Particles

Horn et al, in review (Limnology and Oceanography Letters)

Methods

- 74 Days = 2 reproductive cycles (Boolootian et al 1959)
- 32 Control
- 32 Treatment
- 64 Jars w/1 Female gravid crab

Methods

Treatment Dose: 3x1mm pieces Polypropylene rope every 4 days

All crabs: food and fresh water daily

Horn et al, in review (Limnology and Oceanography Letters)

Methods

Sub-sample of eggs collected every 4 days

Horn et al, in review (Limnology and Oceanography Letters)

Pacific Mole Crab Egg Development Stages

Boolootian et al 1959

Pacific Mole Crab Egg Development Stages

Larval Stages

Boolootian et al 1959

Linear Mixed Effects Model

Does the water bottle in the backpack effect hiking speed?

mdl1

mdl2

mdl1 = hiking speed ~ gallon of water + flashlight mdl2 = hiking speed ~ flashlight Using Ime4 in R Studio

Likelihood Ratio Test to compare the likelihood of the two models to each other (Winter 2013).

Output from ratio test \rightarrow Chi sq (χ^2) = 9.55, df = 4, p = 0.04

Linear Mixed Effects Model

Random Effects

- Number of microplastic fibers internalized by the adult crab
- Adult crab size
- Molting event
- Number of parasites
- Starting stage of egg clutch

Likelihood Ratio Test to compare the likelihood of the two models to each other (Winter 2013).

Fixed Effects

 Exposed to polypropylene microfibers

Response Variables

- Adult mortality
- Number of days adult crabs held live/viable eggs
- Number of development stages egg clutches went thru

Adult Crabs exposed to plastic had higher mortality rates

Chi sq (χ^2) = 45.83, df = 30, p = 0.03

Horn et al, in review (Limnology and Oceanography Letters)

adult crab

stage two of egg development

microplastic exposure

• The number of days an adult crab held live/viable eggs in her clutch was negatively affected by microplastic exposure when those eggs were at stage two of egg development at the study start (Chi sq $(X^2) = 9.55$, df = 4, p = 0.04).

The number of polypropylene microplastic fibers internalized decreased the number of days that an adult sand crab held live/viable eggs.

(Likelihood Ratio test($\mathcal{X}^2(1) = 27.54$, p<0.001), by 4.46 days ±0.75 SE)

Horn et al, in review (Limnology and Oceanography Letters)

Microplastic fibers internalized by the adult crab *increased* the number of egg stages by 1.04 stages ±0.5 SE
(X² (1) = 11.53, p = 0.04)

Additives & POPs in the food web

Additives:

Plasticizers, antioxidants, anti-static agents and flame retardants

Adsorbed chemicals: PCBs, DDT, brominated flame-retardants

Concentration of POPs in plastic pellets a million times higher than in the surrounding seawater (Mato *et al.* 2001)

Take Home

 Microplastics in sand of every beach sampled across the California and Oregon coast.

 Polypropylene microfibers negatively affected sand crab mortality and reproductive output

Take Home

Pathway of ingestion into coastal food webs.

• Microplastics known to accumulate and transfer harmful chemicals into tissue (Browne *et. al* 2013

What can you do?

It's Worth the Effort

 Consistent monitoring of debris is important

 15,000 tons of Debris is removed each year on coastal clean up

dhorn@pdx.edu

www.dorothyhorn.org

@MPsImpactOceans

Dorothy Horn, Elise Granek and Clare Steele

California State University

CHANNEL ISLANDS

