Estimating spatial non-stationary environmental effects on the distribution of Pacific saury in the Northwest Pacific Ocean

Presenter: Bai Li (bai.li@maine.edu)
North Pacific Fisheries Commission (NPFC)

- North Pacific Fisheries Commission
  - Inter-governmental organization
  - Canada, China, Japan, the Republic of Korea, the Russian Federation, Chinese Taipei, the United States of America, and Vanuatu



North Pacific Fisheries Commission

 Ensures long-term conservation and sustainable use of the fisheries resources

- Protects the marine ecosystems of the North Pacific

Ocean



- North Pacific Fisheries Commission
  - Pacific saury (Cololabis saira)
  - High priority
  - China, Japan, Korea, Russia, Chinese Taipei, and Vanuatu



• Timeline of the work

| 3<sup>rd</sup> SSC meeting

- Joint CPUE index
- Aggregate Members' data

**PICES** meeting

- Environment
- Distribution

2016 2018 2019 Now

#### 1st Stock assessment workshop

- CPUE standardization
- Environmental variables:

SST, SSS, moon phase

#### 4th TWG meeting

- Joint CPUE index
- Environmental variables:

SST, SSH, and SSTG

- Potential environmental effects
  - Top-down effect
    - Competition and predation N







- Potential environmental effects
  - Bottom-up effect

• Resource availability Organism (36 processes total) (e.g. temperature and nutrients)

#### Examples:

Range size and location Habitat quantity and quality

(Scheffers et al., 2016)



- Previous studies on saury distribution and environmental effects
  - Sea surface temperature
    - 10 20 °C; 14 16 °C
  - Sea surface height anomaly
    - 5 17 cm
  - Eddy kinetic energy
    - $700 1200 \text{ cm}^2\text{s}^{-2}$
  - Chlorophyll a
    - $0.4 1.8 \text{ mg m}^{-3}$
  - Net primary production
    - 600 800 mg C m<sup>-2</sup>d<sup>-1</sup>



(Watanabe et al., 2006; Huang et al., 2007; Tseng et al., 2011, 2013 & 2014; Syah et al., 2016 & 2017)

- Previous studies on saury distribution modeling
  - Data from single Member
  - Generalized linear model (GLM)
  - Generalized additive model
  - Habitat suitability index model



(Huang et al., 2007; Tseng et al., 2011 & 2013; Syah et al., 2017; Chang et al., 2018)

- Previous studies on saury distribution modeling
  - Data from single Member
  - Generalized linear model (GLM)
  - Generalized additive model
  - Habitat suitability index model



Elucidate important correlations between factors Mask geographic varied (non-stationary) relationship

Stationarity and non-stationarity

#### Stationarity:

- Relationships between environmental factors and saury CPUE are constant throughout the study region
- Parameters (mean and variance) of a process are independent of location or direction

Stationarity and non-stationarity

#### Non-stationarity:

- "Everything is related to everything else, but near things are more related than distant things". –Tobler's 1<sup>st</sup> law of geography
- Relationships between environmental factors and saury CPUE vary over the large study region

#### Objective

 Estimating spatial non-stationary environmental effects on the distribution of Pacific saury CPUE at a finer spatial scale



#### • Fishery data

(May - Dec)



Year

- Fishery data
  - Catch per unit effort
  - $-1^{\circ} \times 1^{\circ}$  grid



- Environmental data
  - Sea surface temperature
  - Sea surface height
  - Sea surface temperature gradient
  - Chlorophyll a
  - 2003 2017; Month
  - $-1^{\circ} \times 1^{\circ}$  grid

- Geographically weighted regression model
  - Extension of the traditional GLM
  - Incorporate a set of geographic locations for GLM development at each observation point

CPUE<sub>i</sub> (x<sub>i</sub>, y<sub>i</sub>) = 
$$\beta_0(x_i, y_i) + \beta_1(x_i, y_i)$$
 SST+  
 $\beta_2(x_i, y_i)$  SSH+  $\beta_3(x_i, y_i)$  SSTG  
+  $\beta_4(x_i, y_i)$  CHL+  $\varepsilon_i$ 

x<sub>i</sub> and y<sub>i</sub>: longitude and latitude coordinates

- Geographically weighted regression model
  - Moving window
  - Fixed Gaussian weight

$$W_{ij} = \exp(-d_{ij}^2/\theta^2)$$

dii: distance between regression point i and data point j

data point



• Global regression results vs. GWR results

|                  | GLM   | GWR               |
|------------------|-------|-------------------|
| Number of points | 3259  | 3259              |
| R square         | 0.037 | 0.27              |
| SST coefficient  | 0.05  | -1.38 ~ 1.77      |
| SSH coefficient  | 0.05  | $-5.00 \sim 5.34$ |
| SSTG coefficient | 0.16  | -8.02 ~ 1.56      |
| CHL coefficient  | 0.13  | -15.98 ~ 25.73    |

• Global regression results vs. GWR results

|                  | GLM   | GWR               |
|------------------|-------|-------------------|
| Number of points | 3259  | 3259              |
| R square         | 0.037 | 0.27              |
| SST coefficient  | 0.05  | -1.38 ~ 1.77      |
| SSH coefficient  | 0.05  | $-5.00 \sim 5.34$ |
| SSTG coefficient | 0.16  | -8.02 ~ 1.56      |
| CHL coefficient  | 0.13  | -15.98 ~ 25.73    |

• Global regression results vs. GWR results

|                  | GLM   | GWR               |
|------------------|-------|-------------------|
| Number of points | 3259  | 3259              |
| R square         | 0.037 | 0.27              |
| SST coefficient  | 0.05  | -1.38 ~ 1.77      |
| SSH coefficient  | 0.05  | $-5.00 \sim 5.34$ |
| SSTG coefficient | 0.16  | -8.02 ~ 1.56      |
| CHL coefficient  | 0.13  | -15.98 ~ 25.73    |

- Rank of importance
  - I means most important and IV means least important
  - I: CHL; II: SST; III: SSH; IV: SSTG



Chlorophyll a coefficients



• Sea surface temperature coefficients



• Positive and negative SST coefficients



- Sea surface height coefficients
  - Spatially varied relationships
  - Similar pattern of clusters with SST



- Sea surface temperature gradient coefficients
  - East and west of 150°E



- Predicted CPUE and Moran' I test
  - No spatial autocorrelation in residuals (p=0.214)
- Cross validation (Train: 63.4%; 100 simulations)
  - Mean root mean square error is 2.94 t/days



- Biology perspective
  - Chlorophyll a was the most important predictor of distribution
  - Spatially-varied environmental effects were found



- Biology perspective
  - Chlorophyll a was the most important predictor of distribution
  - Spatially-varied environmental effects were found

- East and west of 150°E/155°E exhibited different

relationships



- Modeling perspective
  - R<sup>2</sup> Improvement from global GLM to GWR
  - Averaged environmental relationships (global models) within large marine ecosystem may mask processes operating at different scales (Pacific saury, Atlantic cod, American lobster, Snow crab, shrimp...)



- Management perspective
  - Regional differences and climate change
  - Reliable prediction with better understanding of environment and saury distribution at a finer scale



- Can CPUE represent the abundance distribution of saury?
  - Use effort in this study
  - Apply the method to other fishery-independent survey data
- Significance of the estimated relationship
  - Consider other factors (Chub mackerel, front...)
  - Higher data resolution ( $<1^{\circ} \times 1^{\circ}$ )
- Future distribution under climate change
  - Predictions under different SST warming scenarios





#### **NPFC** Experts:

Yi-Jay Chang

Kazuhiro Oshima

Taiki Fuji

Siquan Tian

Vladimir Kulik

Seok-Gwan Choi

Kevin Lin

#### **Workshop Convenors:**

Chris Rooper

Alex Zavolokin

Yong Chen



