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Context

e Study of acoustic backscatter:
o Thorough, non-invasive approach
o Allows to monitor underwater sites for ecosystem changes

e Data:
o Acquired via multifrequency echosounders (e.g. AZFPs)
o Visualized as 2D images (echograms)

Sample echogram (67 kHz) Sample echogram (455 kHz)
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Context

e Challenges:

o Echograms typically analyzed via manual or semi-
automatic methods:

m Time consuming (tons of data to analyze)
m Prone to errors and inconsistencies
m Expensive third-party software (e.g. EchoView)

e Solution:

o Machine learning can improve data processing and
Interpretation!
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Context

e Collaborative project:

(Institute of Ocean Sciences)

Biologists
/ = Acquire data x
(Computer vision research lab) Remote sensing specialists
Computer engineers and acousticians

= Develop ML tools = Develop echosounders (AZFPs)
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Context

e (Goal:

o Explore novel ways to detect visual patterns from
echosounder data using computer vision and machine
learning techniques

e (Case study:

o Automatic detection of schools of herring from AZFP
measurements
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Contributions

1. We propose a dual paradigm approach for fish detection
from echograms

o Classical machine learning paradigm

o Deep learning paradigm: novel application that goes
beyond the few existing works

2. Our framework automates acoustic survey analyses

o Will reduce processing times, required man-power, and
Inconsistencies in the results

o Potential to be scaled to handle additional underwater
species (e.g. salmon, zooplankton, etc.)
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Proposed Method: Overview
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Proposed Method: Overview

Inference Phase

Unseen Echogram

|

P
For each ROI: ROI Extraction For each ROI:
Hand-crafted features J Convolutional Neural
(Orientation, eccentricity, Networks-based features
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mean intensity)
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ROI Extraction
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Classical ML: Classification

e [eatures:

o The objective is to engineer the best set of features based on
contextual information of the schools

o Features should reflect the appearance and geometry of the
schools

o Selected features are;:
m Mean intensity of regions

m Ratio between the minor axis to the major axis of an ellipse that
has the same normalized second central moments as the region

m Eccentricity: how much the center of mass differs from the center
of the circumscribed circle

m Circularity: specifies the roundness of object
e Classifier:

o The still popular Support Vector Machines (SVM) classifier with
linear kernel is utilized
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Deep-Learning Classification

-

The use of deep learning frameworks
can automate the classification task
by computing discriminant features,
regardless of object class.

/

1. Use a Convolutional Neural Network (CNN)-based
architectures for the automatic extraction of features

2. Use the extracted features as inputs of a fully

connected network (FCN) that generates predictions
3. Calculate the loss based on the ground truth data
4. Use backpropagation to update network parameters,

yielding better predictions
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Deep-Learning Classification

~

4 1. Use a Convolutional
Neural Network (CNN)-based
architectures for the
automatic extraction of
features.

J




Computer Vision-Based Detection of Schools of Herring

Deep-Learning Classification

4 2. Use the extracted N
features as inputs of a
fully connected network
(FCN) that generates
predictions.

- )
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Deep-Learning Classification

3. Calculate
the loss based
on ground truth
data.
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Deep-Learning Classification

4. Use backpropagation to
update network parameters,
yielding better predictions.
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Experimental Results - Dataset

[Ground truth dataset]

100 echograms

145 samples of schools of
herrings

Samples are used for the extraction
of hand-crafted features (SVM)

and the training of the deep
learning-based classifier.

Echograms with annotated samples
(yellow bounding boxes)
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

I

1. Regions of Interest (ROI extractor output):
Black bounding boxes
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

I

2. Use SVM (handcrafted-based features) or deep learning-
based approach to classify each ROI: white bounding boxes
represent prediction of schools
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

I

3. Compare detection with the ground truth: yellow bounding
boxes
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

Image retrieved from
https://tinyurl.com/y3gn7mtl

If a detection has an loU > threshold: true positive.
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

I

TP

3. Compare detection with the ground truth: yellow bounding
boxes



Computer Vision-Based Detection of Schools of Herring

Experimental Results - Evaluation

How to determine if an ROl is a true positive?

I

|

2 conditions:
- Classified as “herring”
- loU value > loU threshold

TP

3. Compare detection with the ground truth: yellow bounding
boxes
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?
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boxes
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

TN ]

Fp TN

I

TP

FN

3. Compare detection with the ground truth: yellow bounding
boxes
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Experimental Results - Evaluation

How to determine if an ROl is a true positive?

TN ]

Fp TN

I

TP

FN

4. Calculate that for all samples in the dataset:
100 samples
145 instances of schools of herring
TP, FP, TN, FN
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e ROI Extractor Evaluation

Experimental Results: Quantitative

Precision | Precision | Recall | F1-Score
0.0 0.173 0.931 | 0.292
0.2 0.171 0.917 | 0.288
0.4 0.155 0.834 | 0.262

e Entire Framework Evaluation (loU =0.4)

Architecture Precision | Recall | F1-Score
ResNet50 0.77 0.85 0.81
DenseNet201 0.78 0.85 0.82
InceptionNet 0.81 0.81 0.81
Baseline (SVM) | 0.51 0.78 0.62
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Experimental Results: Qualitative

SVM (loU threshold 0.4)

Correct detections
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Experimental Results: Qualitative

Deep Learning: ResNet-50 (loU threshold 0.4)

Correct detections
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Experimental Results: Qualitative

SVM (loU threshold 0.4)

False detections (FP)
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Experimental Results: Qualitative

Deep Learning: ResNet-50 (loU threshold 0.4)

False detection are now TN
A new FP
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Experimental Results: Qualitative

SVM (loU threshold 0.4)

False detections (FP)
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Experimental Results: Qualitative

Deep Learning: ResNet-50 (loU threshold 0.4)

False detection are now TN
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Experimental Results: Qualitative

SVM (loU threshold 0.4)

False detections (FP)
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Experimental Results: Qualitative

Deep Learning: ResNet-50 (loU threshold 0.4)

False detection are now TN
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Conclusion

e \We explored machine learning approaches for the
automatic detection of schools of herring from
echograms created from AZFP data

e \We proposed and compared two different methods to
classify regions of interests:

o hand-crafted features + support vector machine

o features automatically extracted and classified by CNNs

e Both methods yielded good results, but CNNs performed
best (F1-score: 0.82), even though the dataset was small

e Limitation: performance of ROI extraction, as classifiers
can only classify extracted ROls
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Current/Future Work

e Our collaborative project continues!

o Single deep learning detection
pipeline:
m Single network to perform
localization and classification

m More scalable approach

o Extension to other species,
structures, and phenomena
that can be monitored with
echosounders:

m Current: salmon, zooplankton

m Future: suspended sediments,
ocean turbulence, etc.
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