# ph estimation using dnn

Di Wan<sup>1</sup>, Pramod Thupaki<sup>2</sup>, Gregor Reid<sup>3</sup>

<sup>1</sup>Institute of Ocean Sciences, Fisheries and Oceans Canada <sup>2</sup>Hakai Institute, Victoria, Canada <sup>3</sup>Department of Fisheries and Aquaculture, Shelburne, Canada







#### Motivation

- Difficulty in measuring pH
- Ocean acidification vs coastal acidification
- High variability in pH in coastal regions: upwelling, coastal nutrient changes
- Current methods
  - Bottle: pH ~ (Temp, titration alkalinity, DIC)
  - Profile pH sensor (fast response, but requires more frequent calibration)
  - Moored pH sensors (allows less frequent calibration, but the sensors response time is longer)

# Objective

- Use easy to measure variables and not directly related to DIC or Alkalinity
- Accuracy ~0.01 0.001
- Achieve real-time or near real-time prediction (e.g. Argo SOCCOM biogeochemical floats)

#### Data Source

- 142 profiles from 2000 to 2018 that has pH values
- 2042 data points 650 usable points
  - T, S, Phosphate, silicate, Nitrate+nitrite, DO, and pH
- Was not a trivial process to clean up the data





#### **METHODS**

- Deep neural network (Validation split = 0.2)
- Stochastic Gradient Descent
- Apply dropout nodes to prevent overfitting
- Variables used: pH, T, S, phophate, nitrate+nitrite, silicate, DO
- Linear activation function is used linear and fast; modification can be made

### DEEP NEURAL NETWORK

#### Neural Network Deep Neural Network Hidden Hidden Layer Layer Input Input Layer Layer Output Output Layer Layer

# Dropout: prevent overfitting

• 2 layers, 32 nodes per layer, 50% dropout



(a) Standard Neural Net



(b) After applying dropout





- MSE ~ 0.01 for training;
- MSE ~ 0.01 for validation
- Why is validation error more than training error??
- Not enough data?
- Clearly 2 patterns



- Manual investigation
- 2001-2003
- 4 cruises, 124 data points









- MSE ~ 0.0033 for training;
- MSE ~ 0.004 for validation
- R2 = 0.98
- How should we explain the 2 groups? Is it related to bad observations or cool findings?

# Summary

- Why is validation error more than training error?
  - Insufficient data?
- More data is needed to aim for better accuracy
- How should we explain the 2 groups? Is it related to bad observations or cool findings?
- Can we use ML to spot cool science and/or QA/QC?

# Acknowledgment

- DFO IOS Data group
- Lisa Miller
- Charles Hannah