Assessment of fishery resources around Set-net using acoustic methods for sustainable fishery

Yanhui Zhu^{1S*}, Kenji Minami², Yuka Iwahara³, Kentaro Oda³, Koichi Hidaka³, Osamu Hoson³,Kouji Morishita³, Sentaro Tsuru³, Masahito Hirota³, Hokuto Shirakawa⁴, Kazushi Miyashita⁴

Introduction: Coastal fisheries in Japan

87% of Japanese fishermen serve in the coastal fisheries

MAFF(Ministry of Agriculture, Forestry and Fisheries)

fisherv

Set-net fisheries support coastal economy and people's life

Introduction: Set-net fishery

Suzu: The only main industry is Set-net fishery

Set-net fishery requires more stable resources than others

Introduction: Resource management in Set-net fishery

To understand the variation in the fish abundance (Nemoto; 1997)

Catch of Set-net

Echo sounder

Catch of Set-net & Acoustic data for more accurate resource management

Introduction: Environmental factor _ Kuroshio Current

Purpose

For resources management in Set-net fishery

Kuroshio Current

Methods: Study area and period

Methods: Study area and period

Autumn (2016/11) Winter (2017/2) Spring (2017/5) Autumn (2017/11) Winter (2018/2) Spring (2018/5)

Methods: Measurement of fish distribution

Fish distribution(GAM)

- Sa & Distance from shore
- Sv & Distance from bottom

Methods: Analysis of fish abundance and composition

Catch of Set-net

① Survey period

Comparison with the acoustic data

To clarify the relationship between fish distribution and fish composition

2 One year

Understand the annual variation in the fish abundance

Environmental survey

• Temperature around Set-net (Conductivity Temperature Depth profiler)

Results: Fish distribution

With the change of Kuroshio flow path the fish abundance and fish distribution changed

Results: Horizontal structure(S_a & Distance from shore)

Results: Vertical structure(S_v & Depth from bottom)

Results: Change of dominant fish species (Catch data)

• Dominant fish species (survey period)

	Autum	n	Winter	Spring			
Regula course	e Horse mae (54%	ckerel)	Yellowtail (60%)	Sardine (58%)			
Large meand	e Horse mae er (69%	ckerel)	Horse mackerel (44%)	Yellowtail (58%)			
With the change of Kuroshio flow path each season's dominant fish species changed							
• <u>Total ca</u>	atch(1 year)	40000 (by) 30000	00 7 Others 90 7 Yellowtail 90 7 Horse macke	372,769 erel			
		20000 Total Catcl	00 - 143,748				
			0 Regular course	Large meander			

Increased catch in the year of Kuroshio large meander

Results: Water temperature of survey area

	Autumn	Winter	Spring			
Regular course	21.6 ~ 22.6°C	16.2 ~ 17.5°C	17.6 ~ 20.6°C			
Large meander	19.2 ~ 20.1ºC	13.1 ~ 14.6°C	16.2 ~ 19.4°C			
		Ţ	(Min. ~ Max.)			
		\checkmark				
Average A	-2.5°C	-3°C	-1.5°C			
The water temperature has dropped Why due to the influence of the Kuroshio Current						

Discussion: Drop in water temperature

Cold water mass formed in the survey area due to the Kuroshio large meander

Discussion: Optimum temperature of dominant fish

due to Kuroshio large meander

Discussion: Change of fish distribution

Results

Autumn & Winter: Increased fish density near the bottom Spring: Increased fish density near the surface and offshore

The acoustic data properly reflects changes in the fish distribution and abundance .

Fish distribution and abundance is effected by the change of Kuroshio flow path

Future work: Smart Fishery

For more accurate and efficient resource management

Efficient and Stable Fishery Management

