

Development of an AIS 'Monitoring' Program: Past, Present & Next Steps

Claudio DiBacco, J. Ben Lowen

Bedford Institute of Oceanography Fisheries & Oceans Canada, Dartmouth, NS

16 October 2019

- **Past**: Core DFO AIS Monitoring Program
 - Objectives & Program Components
 - Protocols, Common AIS, Monitoring Products
- **Present**: Environmental Monitoring & Prediction
 - Physiological Tolerance, genetics (population structure)
 - Environmental Variability & Climate Change Projections

Next steps...

- Hotspot analysis ...
- Vectors for dispersal ...
- Biogeographic barriers ...

Fisheries & Oceans Canada (DFO) National AIS Program

- **DFO AIS Monitoring Program**
 - National Program
- Of 12 Canadian Marine Ecoregions...
 - Regions 1-4 & 10-12 have been monitored since 2006
 - Regions 8 & 9 are monitored more sporadically ...
 - Others (5 7) not at all 😕

Canadian Marine Ecoregions (DFO 2009)

Regional Program Objectives

Overarching

 To protect the health and productivity of Canada's aquatic ecosystems through the *identification of high risk AIS and their pathways*, & *reducing the risk of their introduction and spread*

• Specific

- prevention of new invasions
- early detection of new invaders
- rapid response to new invaders
- management of established and spreading invaders
 - containment, eradication, control

AIS Program Components

Annual Monitoring

- Field assessment (e.g., collector plates, rapid assessment, eDNA)

Research & Development

- Experimental Field & Laboratory (e.g., physiological tolerance)
- Population Structure (e.g., genomics, environmental responses)
- Modelling (e.g., suitable habitat & connectivity modelling)
- Climate Projection (i.e., environmental variability & climate change)
- Risk Analysis & Assessment
 - Rapid Response & delineation, SLRAs, DLRAs
- Data Management & Sharing

AIS Monitoring Protocols

- DFO Maritime's Protocols
 - ~50-60 sites yr⁻¹
 - Sentinel & Targeted Sites
 - Spring to Fall Deployment

Monitor

- Introduction & Establishment
- Presence / Absence
- Range Expansion (Inter-annual)
- Relative Abundance (% Cover)
- Environmental Drivers
- Species Interactions & Impacts

AIS Monitoring Protocols

- DFO Maritime's Protocols
 - ~50-60 sites yr⁻¹
 - Sentinel & Targeted Sites
 - Spring to Fall Deployment

Monitor

- Introduction & Establishment
- Presence / Absence
- Range Expansion (Inter-annual)
- Relative Abundance (% Cover)
- Environmental Drivers
- Species Interactions & Impacts

AIS Monitoring Protocols

- Target at-risk sites
 - Best available information
 - Spring Deployment / Fall Recovery to assess recruitment, growth season
- 10 settlement collectors site⁻¹
 - ~1m depth; 5 10 m apart
- Fall Assessment
 - Presence/Absence
 - Species Richness
 - AIS & Native species
 - % Cover

Fisheries and Oceans Pêches et Océans Canada Canada

AIS Presence/Absence & Richness

Additional Monitoring Tools

1. Rapid Assessments & Responses

- 2. Monitoring surveys
- **3. Subtidal ground lines**

Environmental Monitoring

- Environmental Monitoring
 - Temperature @ all sites
 - Temp. & Salinity @ select sites

AIS Richness

AIS Environmental Monitoring

AIS Physiological Tolerances

AIS Genetic Structure

AIS Genetic Structure

Environmental Matching & Prediction

- AIS Distributions
 - 2006 present
 - ~50 sites yr-1
 - Spring to Fall Deployment

Climate Matching

- Environmental Mon. (T & S)
- Suitable Habitat Modelling

Climate Change Projections

Salinity Anomalies

Temperature Anomalies

• AIS Distributions

- 2006 present
- ~50 sites yr-1
- Spring to Fall Deployment

Climate Matching

- Environmental Mon. (T & S)
- Suitable Habitat Modelling
- Projections & Predictions
 - decades to centuries

<u>Case Study</u>: Pancake Batter Tunicate (Didemnum vexillum) in Atlantic Canada 'Established' 2013

- Rapid Assessment (confirm ID; local distribution)
- Communication (DFO, Stakeholders, Industry)
- Delineation Survey (regional distribution)

Pancake batter tunicate (Didemnum vexillum)

Case Study: Pancake Batter Tunicate (Didemnum vexillum) in Atlantic Canada 'Established' 2013

- Rapid Assessment (confirm ID; local distribution)
- Communication (DFO, Stakeholders, Industry)
- Delineation Survey (regional distribution)
- SLRA Screening Level Risk Assessment
 - Canadian Marine Invasive Species Tool (CMIST)

Pancake batter tunicate (Didemnum vexillum)

(Drolet et al. 2016)

Case Study: Pancake Batter Tunicate (Didemnum vexillum) in Atlantic Canada

'Established' 2013

- Rapid Assessment (confirm ID; local distribution)
- Communication (DFO, Stakeholders, Industry)
- Delineation Survey (regional distribution)
- SLRA Screening Level Risk Assessment
- DLRA Detailed Level Risk Assessment
 - Species dist. (AIS Mon., databases, pubs., ...)
 - SDM (Present day, spatial risk assessment)
 - Climate Projection (Future risk)

Environmental Matching & Prediction

Recent Invaders (2014-2018)...

- Pancake batter tunicate (*Didemnum vexillum*)
- Green crab (Carcinus maenas) ... Lineage I & II

Future Invaders (2014-2018)...

- Diplosoma tunicate (Diplosoma listerianum)
- Asian shore crab (Hemigrapsus sanguineus)

Informing AIS Monitoring: "Prioritizing What & Where We Monitor"

<u>Risk Assessment</u> ... next steps

- Suitable Habitat Modeling ...
- Climate Change Projections ...
 - Environmental variability

(short term variability)

Real Time Environmental Monitoring & Prediction

Climate Projections (2075)

- Predicted Annual temperature
 - Increased ~1-3 °C
- SDM highly suitable habitats
 - e.g., swNB, swNS

Informing AIS Monitoring: "Prioritizing What & Where We Monitor"

Risk Assessment Steps ... next steps

- Suitable Habitat Modeling ...
- Climate Change Projections ...
 - Environmental variability
- Hotspot analysis ...

Hotspot Analysis

(Lyons et al., pers. comm.) Canada

Informing AIS Monitoring: "Prioritizing What & Where We Monitor"

Risk Assessment Steps ... next steps

- Suitable Habitat Modeling ...
- Climate Change Projections ...
 Environmental variability
- Hotspot analysis ...
- Vectors for dispersal ...
- Biogeographic barriers ...

Regional Program Objectives

Overarching

 To protect the health and productivity of Canada's aquatic ecosystems through the *identification of high risk AIS and their pathways*, & *reducing the risk of their introduction and spread*

• Specific

- prevention of new invasions
- early detection of new invaders
- rapid response to new invaders
- management of established and spreading invaders
 - containment, eradication, control

Acknowledgements

DFO-Maritimes

- B. Lowen, D. Lyons,
- A. Moore, A. Silva,
- J. FitzGerald, D. Sephton,
- B. Vercaemer

DFO

T. Therriault, R. Bernier,C. Coombs, D. Drolet,A. Locke, K. Matheson,C. McKenzie, C. McKindsey,N. Simard, J. Webb, T. Wells

