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How ocean sampling can help modeling efforts

1) Conceptual models representing the contemporary understanding of the ecosystem
2) Improving understanding of salmon behavior, growth, and mortality rates at sea,

3) Improve salmon assessment models based on research of ecosystem processes,
4) Life-cycle models to evaluate tradeoffs associated with management alternatives.

5) Looking to the future



How ocean sampling can help modeling efforts

1) Conceptual models representing the contemporary understanding of the ecosystem
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1) Designing purpose-built conceptual models
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How ocean sampling can help modeling efforts

1) Conceptual models representing the contemporary understanding of the ecosystem

2) Improving understanding of salmon behavior, growth, and mortality rates at sea,
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2) Improving our understanding of salmon at sea
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2) Improving our understanding of salmon at sea

Ocean acoustic arrays can inform behavior

. 4.5 km grid
\ Total receiver locations = 101

Behavioral studies can inform these models
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Much of morality at sea is due to predation
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How ocean sampling can help modeling efforts

1) Conceptual models representing the contemporary understanding of the ecosystem
2) Improving understanding of salmon behavior, growth, and mortality rates at sea,

3) Improve salmon assessment models based on research of ecosystem processes,



3) Improvements to salmon assessment models

Harvestable adults at sea = # of jacks returning
This assumes constant maturation and natural mortality rates — Solution: Ocean sampling of older fish.
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3) Improvements to salmon assessment models

Parameter r P-value
Juvenile pink salmon abundance
. . CPUEcal 0.78 <0.001
Pink salmon assessments are exploring CPUE 074 <0001
Seasonality -0.55 0.019
/ / P t fJ ile Pink: 0.55 0.010
inclusion of ocean processes ercentage of Juvenile Pinks
Juvenile pink salmon growth and condition
Pink Salmon Size July 24 0.05 0.847
Condition Index -0.05 0.856
. . . . Energy Content -0.01 0.958
Namely, ocean abundance is estimated from juvenile Percent Stomach Contents 008 0.745
at-sea CPUE in the context of assumed environmental Predator Indexes
: : : Adult Coho Abundance -0.27 0.273
relationships to mortality. As well, at-sea abundance et Cob A e  CPUEo 080 <0001
Of pre d atorsisin CI u d € d Zooplankton standing crop
June/July Average Zooplankton Total Water Column 0.12 0.624
Local-scale physical conditions -
i May 20-m Integrated Water Temperature 0.01 0.978
Harvest = Ln (CPUE _IUVS) +envl +env2 +...env June 20-m Integrated Water Temperature -0.24 0.343
n Iey Strait Temperature Index (ISTI) -0.18 0.488
June Mixed-layer Depth -0.03 0.906
July 3-m Salimty 0.00 0.995
Basin-scale physical conditions
Pacific Decadal Oscillation (PDO, y-1) 0.01 0.983
Northern Pacific Index (NPL, y) 0.62 0.007
ENSO Multivariate Index (MEL Nov (y-1)-March (7)) 0.25 0.326
North Pacific Gyre Oscillations 0.30 0.234
Ecosystem Indicators Rank Index (ERI) -0.83 <0.091’
|

Wertheimer et al 2 17



How ocean sampling can help modeling efforts

1) Conceptual models representing the contemporary understanding of the ecosystem
2) Improving understanding of salmon behavior, growth, and mortality rates at sea,
3) Improve salmon assessment models based on research of ecosystem processes,

4) Life-cycle models to evaluate tradeoffs associated with management alternatives.



4) Development of life-cycle models to evaluate tradeoffs
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Friedman et al. 2019
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4) Development of life-cycle models to evaluate tradeoffs

Downstream
Rearing &
Migration

Carry-over effects (e.g., size
at emigration, timing,
diversity) are directly related
to freshwater experiences
and relate to survival and
maturation at sea. These are
levers in our control. Can be
studied with early sampling
and hatchery manipulations.
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4) Development of life-cycle models to evaluate tradeoffs

Downstream
Rearing &
Migration These are

levers in our control. Can be
studied with early sampling
and hatchery manipulations.

Life-history transitions are
dependent on entry
demographics, ocean
conditions, and selective
predation. Ocean surveys of
older fish provide RN
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4) Development of life-cycle models to evaluate tradeoffs

Successful spawning depends
on return dynamics and
freshwater habitat. The ocean
has influence on age and timing
of spawning and can inform
habitat management. Sampling
fish on return can be used here.

Downstream

Rearing &
Migration These are

levers in our control. Can be
studied with early sampling
and hatchery manipulations.




4) Development of life-cycle models to evaluate tradeoffs Q
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The key is that ocean influences (e.g., predation) were parameterized in the context of all
examined influences across the full life cycle. Therefore, any managerial decisions
considered, such as flow-dependent emigration size or timing, can be evaluated properly in
the context of predation at sea.
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How ocean sampling can help modeling efforts

1) Conceptual models representing the contemporary understanding of the ecosystem
2) Improving understanding of salmon behavior, growth, and mortality rates at sea,

3) Improve salmon assessment models based on research of ecosystem processes,
4) Life-cycle models to evaluate tradeoffs associated with management alternatives.

5) Looking to the future



5) Looking to the future
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Survey data is used to parameterize
ecosystem-level models where there
is need to incorporate behavior,
distribution, prey dynamics and ocean
state.

To the left is modeled growth of
salmon at sea in different ocean
states and to the right is modeled
early survival related to growth
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How ocean sampling can help modeling efforts

1) Designing purpose-built conceptual models can guide research and management

2) Salmon dynamics after early ocean entry are poorly understood

3) Improved understanding of at-sea dynamics could improve assessments,

4) Life-cycle models can be used to evaluate additive and cumulative effects across life

5) To rebuild stocks we need simulation approaches that incorporate and allow discovery of processes.
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