

Toward a plankton-based predictor of tuna recruitment

Phoebe Woodworth-Jefcoats

NOAA Fisheries – Pacific Islands Fisheries Science Center

Johanna Wren

NOAA Fisheries – Pacific Islands Fisheries Science Center

Bigeye Tuna (*Thunnus obesus*) is an important resource that is potentially strained

In recent years, in Hawaii's deep-set longline fishery, bigeye tuna have comprised approximately:

- 35% of all fish caught
- 40% of fish retained
- 55% of catch in weight
- 60% of ex vessel revenue

Intermittently experiencing overfishing, assessments include noted uncertainty

Abascal et al. 2018; Aires-da-Silva and Maunder 2015; Ducharme-Barth et al. 2020; Harley et al. 2014; McKechnie et al 2017; Xu et al. 2018

Recruitment Index

Coherent stock structure

Estimating plankton size from satellite data

Sea surface temperature, *SST*Surface chlorophyll concentration, *chl-a*

Median phytoplankton mass, M_{B50} : $log_{10} (M_{B50}) = 0.929 log_{10} (chl-a) - 0.043 (SST) + 1.340$

Median phytoplankton size, M_{D50} : $M_{D50} = 2.138 (M_{B50})^{0.355}$

Comparison between CPUE, WPUE, and 4-year-lagged M_{D50}

$$r = 0.54$$
 $r = 0.48$

Comparison between CPUE, WPUE, and 4-year-lagged M_{D50}

Forecast skill: $\sum |forecast - observation|$

CPUE skill (fish per 1,000 hooks)

Plankton-based: 6.9

Climatology: 9.2

Persistence: 10.0

WPUE skill (kg per 1,000 hooks)

Plankton-based: 184

Climatology: 220

Persistence: 309

Next steps

Specific to Hawaii's deep-set longline fishery and bigeye tuna

- Advanced statistical approaches to include environmental data
- Spatiotemporal analysis
- Additional estimates of juvenile mortality, e.g., purse seine catch

Further uses

Potential for use with other species and regions

Conclusions

- Satellite-derived estimates of phytoplankton size can be used to skillfully forecast bigeye tuna catch rates up to four years into the future
- The forecast is based on ecological theory, is fisheries independent, and easily derived from publicly available data
- Working to incorporate the underlying ecological relationship in additional fishery applications