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Outline

* Introduction of North Pacific Fisheries Commission (NPFC)
and Pacific saury;

* Modelling the spatiotemporal dynamics of Pacific saury
by using a spatio-temporal modelling framework (VAST);

* Evaluating the influences of various spatial treatments on
the estimation of abundance index;

* General conclusions;



How important small pelagic fishes are?

Small pelagic fish species are a key component of marine ecosystems;

In addition, there are substantial commercial fisheries that exploit
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Distribution and migration route of Pacific saury
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Current issues of the Pacific saury fisheries
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Habitat suitability of pacific saury (Cololabis saira) based on a yield-density | %)
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velop a habitat suitability index (HSD model to identify the relationship between oceanographic variables and
potential habitat. This approach was applied to fishing data from the Chinese saury fishery during the main
| fishing season (June-November) from 2013 to 2015. The oceanographic variables considered included sea
surface temperature (SST), horizontal sea surface temperature gradient (SSTG) and sea surface height (SSH). The \
HSI model was validated using fishery and oceanographic data for 2016. This study indicated that (1) the yield-

density model can be reliably used to fita curvilinear relation between the suitability index (SI) and SST, SSTG,

and SSH, and the optimal habitat conditions for the three variables were obtained; (2) weighted analysis-based

14 poosted regression trees revealed that SSTG had the most important influence on sl each month, followed by SST -
and SSH; and (3) approximately 70% of the fishing effort occurred in the areas where HSI > 0.5in each month.

Results of this study could help to further understand the effects of oceanographic conditions on habitat dis-

ribution and provide a way to forecast saury fishing grounds.
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Objectives of this study

 How did the Pacific saury distribution change in the past?

— To quantify the magnitude of distribution shifting of Pacific
saury over time;

 However, projections of future distribution of Pacific saury solely
based on the environmental variables may be misleading;

— To investigate the extent to which the spatial shifting can be
attributed to the factors of:

Local/regional environmental variables (e.g., SST, Southern
Oscillation Index; SOI);

Unmodelled spatiotemporal variables (e.g., species interaction;
fishing harvest; complex oceanographic condition);



Quantlfy the “Unmodelled” effects on saury
‘ distribution
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Counterfactual analysis

VAST model (Thorson, 2019) N i
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Distribution shifting of Pacific saury
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Environmental v.s. “unmodelled” variables
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Summary

We found that the centroid of gravity of Pacific saury had an
apparent eastward shifting after 2013, and a further shift with
a lower relative abundance in 2017;

We also found that neither a single local or regional
environmental variable nor any combination of them could
simply explain the distributional shift of Pacific saury;

Instead, the change in spatial distribution is mostly attributed
to the “unmodelled” spatiotemporal variables;

We emphasize that developing a quantitative understanding of
the underlying mechanisms is a critical area for future work;
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Current stock assessment result of Pacific saury
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Influences on the fishery CPUE other than
fish abundance
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* “Area stratification” is a common approach to address the
effect of spatial heterogeneity in the CPUE standardization;




The most common method for the
CPUE standardization

e Statistical linear models have been developed to summarize
the combined relationships of many factors;

 Commonly, the spatial heterogeneity in fish density is treated
as the area effect;

CPUE = Intercept + Year +Vessel +

?7??

* Annual CPUE was standardized by fixing all covariates other
than “year” and “area” to a vector of standardized (or
expected) values; -

'
o=y,

The problem is...how to determine each area strata?



Issue for area stratification on standardized CPUE

* Although several approaches have been developed to create
the area stratification in standardizing CPUE data;

Clustering with a

higher weighting
on average CPUE
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 However, there is no guarantee that the selected area
stratification leads to the least biased index of abundance in

the preferential sampling;



Simulation testing in CPUE standardization

e Simulation testing is a powerful tool because the “true” index is
known, so that the standardization method can be tested in terms
of how well it predicts the abundance trends;
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Objectives of this study

Using the real-world and simulated data of the Chinese
Taipei stick-held dip net fishery in the Northwestern
Pacific:

 What is the best spatial treatment in the CPUE
standardization?

— Ad hoc, Binary, Spatial 1, Spatial0.1, and VAST

* To evaluate the impacts of two spatial sampling patterns
in CPUE standardization;

—random v.s. preferential sampling of fishery data;



CPUE standardization model structures

Using GLMMs to evaluate several spatial treatments to standardize
CPUE data:

* Spatially stratified approaches:

guadratic SST effect
random effect

log(CPUE,) = Year, + Area, +Year. x Area, + SST, + SST.* +Vessel,
V V random effect
Ad hoc, Binary, Spatiall, and Spatial0.1

e Spatio-temporal approach (VAST):

Year effects vessel effects (random effect)

A random effect
log(CPUE,) = ﬂ(t)+w(S)+8(S.,t)+5(V)+ZV(J)X(S.J.,J)

j=1
v \ quadratic SST effect
Spatial effects Spatio-temporal effects



Simulation testing in CPUE standardizations
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Applying Ad hoc, Binary, Spatiall, Spatial0.1 GLMMs, and VAST

Comparing with the “true” index by measuring root mean
square error (RMSE) and bias metrics (near one is the best);



Estimated abundance indices from
the real-world data
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Results of model performances among spatial treatments
under two sampling scenarios

RMSE

Bias

Random sampling

030 1 .

0.25 —
0.20 —
0.15 —
0.10 —
0.05
0.00 —

0.14(0.03) 0.13(0.02)|0.08(0.01) 0.08(0.01) 0.07(0.01)

less precision

higher precision
—_—

—_—

—_—

——

—_—

1.2

1.1

0.9 H

0.8 —

1.02(0.05) 0.97(0.04) 1.02(0.03) 0.96(0.03) 1.00(0.03)

Ad hoc Binary Spatial 1 Spatial 0.1  VAST

Model

RMSE

Bias

Preferential sampling

0.30
0.25
0.20

0.15 —
0.10 —
0.05
0.00 —

0.16(0.04) 0.13(0.03) 0.11(0.03) 0.48{6-04) 0.09(0.02)

[ [ [ | |

Ad hoc Binary Spatial 1 Spatial 0.1  VAST

Model



Summary & fishery implications

Ad hoc manner or constrained to rectangular grids may misinterpret
the fish density distribution;
VAST could better explain the fish density than other GLMMs;
— Fish density varies continuously across space;
— The patterns in density distribution over time are described by
unmodelled spatiotemporal variable;

Spatial 0.1 may cause a substantial bias in index estimation if the
spatiotemporal distribution of fisher is non-random;

Spatial 1 is an alternative for defining spatial strata if VAST is not
possible;

Although this study was focused on Pacific saury, the methodology
should be broadly applicable to other fisheries for which similar data
are available;
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ARTICLE INFO ABSTRACT

Handled by: Andre Eric Punt Fishery-dependent catch-per-unit-effort (CPUE) data often exhibit spatial heterogeneity over space and time,
which means that the spatial treatment in statistical models used to standardize CPUE is critically important. We

Keywords: evaluated several spatial treatments to standardize CPUE data using Generalized Linear Mixed Models (GLMMs).

CPUE standardization Results include a real-world application and a simulation based on the Taiwanese stick-held dip net fishery for

Simulation-testing

. Pacific saury in the Northwestern Pacific Ocean. We compared the performance of three spatially stratified
Influence analysis

- . approaches in GLMMs, (i) Ad hoc; (ii) Binary (binary recursive area partitioning based on model selection
Spatio-temporal modelling approach L . . e . . . P

Area stratification criteria); and (iii) Spatial clustering (partitioning of grids into discrete strata based on the spatial proximity and

Pacific saury average CPUE in each grid), to a spatio-temporal GLMM (VAST). An influence analysis was constructed to

quantify discrepancies between unstandardized and standardized indices that assisted in identifying the annual

influence of exnlanatorv variables in GLMMs. We develoned a simulation to corroborate the results from the case

Available code:
https://github.com/jhenhsuNTU/spatial.treatment.influ.analysis.manuscript



https://github.com/jhenhsuNTU/spatial.treatment.influ.analysis.manuscript

Conclusions

The change in the spatial distribution of Pacific saury is mostly
attributed to the “unmodelled” spatiotemporal variables;

We caution that before projecting fish distribution resulting from
climate change/environmental phenomena, analysts should first
determine whether the hypothesized driving variables account
for a meaningful proportion of variability in the historical
distribution data;

Simulation results indicate that “unmodelled” spatiotemporal
variables could provide a more precise treatment to address the
fish density;

— For example: nonstationary SST effect (monthly varying) on
fish density; biological interaction; complicated
oceanographic conditions; preferential sampling;
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