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AI model for surface current prediction?

- An efficient surface current prediction framework around 
Korean peninsula using a 3-dimensional convolutional neural 
network (3-D CNN)

- Ocean surface current 
prediction is essential for 
various objectives.

- Seas around Korean peninsula 
show different characteristics: 
Yellow Sea = tides dominant 
East Sea = mesoscale processes

- Numerical model with fine-
spatial resolution including is 
needed for prediction.

- However, it requires high 
computational power.

Data from KHOA



Convolutional Neural Networks (CNN) 
– Semantic Segmentation

- In Computer Vision (CV) area, there are many different tasks: 
Image Classification, Semantic Segmentation, Object 
Localization, Object Detection, Instance Segmentation, etc.

CS231n: Convolutional Neural Networks for Visual Recognition



Fully Convolutional Networks for Semantic
segmentation (Long et al., 2015)

https://medium.com/@birla.deepak26/

• One of computer vision task
• Fully convolutional network 

(FCN)
• Encoder-Decoder structure
• Pixel-wise classification

• Pixel-wise regression

• Encoder:
Encodes or compresses the 
input data into a latent-space 
representation

• Decoder:
Decodes or reconstructs the 
encoded data 
(latent space representation) 
back to original dimension

CNN – Semantic Segmentation



Oceanic & Atmospheric Data

• Oceanic inputs – OPEM reanalysis data
Time resolution: daily
Spatial resolution: 1/20° → 1/16°

Sea surface current (U, V, SSH)

• Atmospheric inputs – ECMWF ERA5 reanalysis data
Time resolution: hourly → daily
Spatial resolution: 1/4°→ 1/16°

- Only 10 m above surface wind velocity (U10, V10)

• Train set: 1993–2012 (20 years)

• Test set: 2013-2014 (2 years)



AI Methods
• Z = sin(latitude)

• The U-shaped network:
Encoder-decoder structure with shortcut connection

• The full domain (256×256) are divided into four patches 
(128×128) and used in the training processes

• Double encoder for each oceanic and atmospheric data
• Topography data is included in the shortcut connection

Shortcut connection
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Recursive way 
for prediction



AI model prediction of surface current for 5 days: 
Yellow Sea

Start date: Apr. 19, 2012               Start date: Jul. 08, 2012



AI model prediction of surface current for 5 days: 
East Sea

Start date: Apr. 29, 2012               Start date: Sep. 01, 2013



AI model prediction of surface current for 5 days : 
East China Sea

Start date: Feb. 09, 2012               Start date: Jul. 08, 2012



AI model performance depending on input periods
and winds 

• Pper: Persistence prediction (RMSE between today and tomorrow)
• PUV,SSH,Wind: Prediction with surface current, SSH, and 10-m wind
• PUV,SSH,Wind+: PUV,SSH,Wind with the next-day wind

RMSE of U

SCC of U 
(spatial 
correlation 
coefficient)

• Optimal input 
periods are 3 to 5 
days.

• The next-day wind 
input performs 
the best. 



AI model errors depending on predicting days
=> RMSE=~0.07 m/s for the prediction on day 3

• Pper: Persistence prediction (RMSE between today and tomorrow)
• PUV,SSH,Wind: Prediction with surface current, SSH, and 10-m wind
• PUV,SSH,Wind+: PUV,SSH,Wind with the next day’s wind

RMSE of U

RMSE of V

RMSE of SSH



Effects of wind+ on the current prediction

Error distribution of uv-component averaged RMSE 
(RMSEuv) for the 1st prediction day (Input days = 3)

Prediction using U, V, SSH, wind                 using U, V, SSH, wind+                             



Effects of wind+ on the current prediction
using U, V, SSH, wind+                            

• The input of the next-day wind 
(wind+) results in a significant 
improvement in the Yellow Sea 
as expected. In addition, open 
sea areas also show some 
improvement.

• Yangtze River discharge 
prediction is also improved 
with wind+

• The effects of wind+ on the 
strong geostrophic currents 
such as the Kuroshio and the 
East Korea Warm Current are 
rarely seen. 



Prediction of typhoon-induced currents improves 
when the next-day winds (wind+) are used
Typhoon: BOLAVEN

PUV,SSH,Wind

PUV,SSH,Wind+



Transfer learning
Oceanic input – OPEM reanalysis data

Atmospheric input – ECMWF ERA5 data 

• Train set: 1993–2012 (20 years)
• Test set: 2013-2014 (2 years)

Oceanic input – OPEM analysis data

Atmospheric input –KMA GDAPS data

• Train set: 2017–2020 (4 years)
• Test set: 2021 (1 year)

Transfer learning

Target
data

Source
data

https://www.v7labs.com/blog/transfer-
learning-guide

PUV,SSH,Wind+



Source

data

PUV,SSH,Wind+

Case0: No transfer learning case
Case1: Transfer learned case 

(from 20 years of reanalysis data) 

RMSE:
Pper≈0.1

SCC:
Pper≈0.89

~8%
.

~8%
.

Improvement of current prediction using transfer 
learning



Error distribution of uv-component averaged RMSE (RMSEuv) for 
the 1st prediction day (Input days = 3)

Case0 (No transfer learning) Case1 (transfer learning)

Improvement of current prediction using transfer 
learning



Conclusions

• The U-shaped 3-D CNN model is applied to predict the sea 
surface current around Korean peninsula.

• The AI model including the next-day wind data shows the 
better performance than the other models. In addition, it 
could successfully simulate extreme events caused by the
typhoon passage.

• Transfer learning can improve the performance of the sea 
surface current prediction. 

• High resolution ocean prediction system using CNNs can be a 
practical and efficient way with a lightweight computing 
power.
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