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Bioenergetic stress during the marine heatwave

Gulf of Alaska Ecosystem Assessment (Zador et al 2017)
* Loss of productivity
* Lower trophic transfer efficiency
* Increased metabolic demand
e Seasonal interactions e.g., winter
* Evidence based on observations of summer diets (fullness,
prey quality) and bioenergetic models
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62 cm adult Pacific cod — Anton Larsen Bay, Kodiak
Photo by P. Iseri



But what about early life stages?




Early life stages determine population dynamics

Settled juveniles (Summer —fall)



Review of early life stages
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Warming results in bigger
larvae and age-0 juvenile cod
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Changes in age-0 juvenile size structure in the
post-heatwave era

Pre-heatwave era -- July 2012 - Anton Larsen Bay
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Will changes in size structure impact first
winter survival?

* In freshwater, overwintering survival is higher in larger juveniles (Post and
Evans, 1989; Bystrom et al. 2006; Huss et al 2008).
* Weight specific standard metabolic rates (Jobling 1990)

. 5%\6v1e)r energy storage in smaller individuals (Hunter and Post 1990; Lankford and Targett

*In ma)rine systems, overwintering survival is more poorly understood (Hurst
2006

* Pre-winter energetic condition and feeding conditions (Heintz et al 2013)

* Can be siie independent and/or linked to fall growth (Geissinger et al. 2021; Geissinger et al
in review

* Overwintering success rests on many assumptions on environmental
conditions (e.g., predators, thermal habitat, food availability).

* Climate change likely to change overwintering success by way of a number
of mechanisms in unpredictable ways



Questions

1) Can overwintering success be predicted from late summer
cohort demographics e.g. size-at-capture?

2) To what degree does feeding and thermal experience in the
fall impact winter survival?

3) Do condition metrics based on growth and lipid energy
improve predictions of winter survival?

4) Will warmer thermal regimes (warm falls coupled with warm
winters) amplify overwintering mortality in age-0 Pacific cod?
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Size is a weak predictor of overwintering survival but
improves when measured just before winter onset
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Size is still a weak predictor of
overwintering survival even when
thermal winter conditions are known

Overwintering survival (days)
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Fall growth experience impacts winter survival

R2=51%

-1.0 -0.5 0o 05 1.0

Fall growth predicts overwintering survival without knowing fall/winter environmental experience
Fish under high food conditions in the fall grew faster and survived longer

Warm conditions in the fall reduce growth potential under low food conditions
Winter survival depends more on winter temperature for high fed fish in contrast to growth for low fed fish



Lipid density (total fatty acids wwt mg/q)
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Conclusions

1) Can overwintering success be predicted from late summer/early fall size-at-
capture?
* Sometimes but need to know both fall and winter environments. Size is not a predictor of
lipid density.
2) To what degree does feeding and thermal experience in the fall impact winter
survival?
* Fall food availability is very important to winter survival, especially under warm fall
conditions

3) Do condition metrics based on growth and lipid energy improve predictions of
winter survival?

* Yes!

4) Will warmer thermal regimes (warm falls coupled with warm winters) amplify
overwintering mortality in age-0 Pacific cod?

* Likely, as there is an increased demand on fall/winter food availability



Management implications

L T i — . WP
* Fall age-0 surveys would greatly |mprove our ab|I|ty to predict

overwintering success (late estimates of CPUE, characterize
food/thermal environments, measurements of fish condition, size etc)

! * In the absence of fall surveys, real-time management could integrate
metrics/proxies of fall/winter environments with summer surveys.

. Age-1 growth histories (e.g., otoliths) could potentially be used for
hindcast analyses.

e Survival trajectories based on size/growth/condition will change as
winter/fall environments change




The Pcod team in Newport, OR
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-00d availability impacts growth during warm
fall conditions

7°C fall condition 10°C fall conditions
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Background

 Early life stages of marine fish are highly
sensitive to temperature, but are undergoing
varying rates of thermal stress across ecosystems

* The rapid decline of Pacific cod biomass
following the 2014-16 Gulf of Alaska marine
heatwave has prompted a review of 1st year of
life biology for this species, as well as
management tools to better prepare for
recruitment failure

* We use observational data and thermal habitat
models to examine contemporary and historical
distributions in an effort to isolate important
critical periods under varying climate stress
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Size only predicts winter
survival under certain

environmental conditions
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Late summer size Late fall size Late fall size + fall environmental conditions
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Fall growth experience impacts winter survival
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Fall growth predicts overwintering survival without knowing fall/winter environmental experience
Fish under high food conditions in the fall grew faster and survived longer

Warm conditions in the fall reduce growth potential under low food conditions

Warm conditions in the fall reduce growth potential under low food conditions

Winter survival depends more on winter temperature for high fed fish in contrast to growth for low fed fish
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Background

 Early life stages of marine fish are highly
sensitive to temperature, but are undergoing
varying rates of thermal stress across ecosystems

* The rapid decline of Pacific cod biomass
following the 2014-16 Gulf of Alaska marine
heatwave has prompted a review of 1st year of
life biology for this species, as well as
management tools to better prepare for
recruitment failure

* We use observational data and thermal habitat
models to examine contemporary and historical
distributions in an effort to isolate important
critical periods under varying climate stress




A poleward shift in
the last decade

Data on adult distributions and abundance were from bottom trawl surveys conducted by the
Alaska Fisheries Science Center in the Eastern and Northern Bering Sea (annual 2010-2019; Lauth
et al., 2019); Aleutian Islands (biannual 2010-2018; von Szalay & Raring, 2020) and Gulf of Alaska
(biannual 2011-2019; Von Szalay & Raring, 2018), by the Department of Fisheries and Oceans for
the West Coast Vancouver Island (biannual 2010-2018; Williams et al., 2020b), West Coast Haida
Gwaii (biannual 2010-2018; Williams et al., 2020a), Hecate Strait (biannual 2011-2019; Williams,
2018), West Coast Queen Charlotte Islands (biannual 2011-2019; Workman et al., 2008), and Strait
of Georgia (2012 and 2015; Olsen & Workman, 2013), and by the Northwest Fisheries Science
Center for the west coast of the United States (annual 2010-2019; Keller et al., 2017).
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Size is still a weak predictor of
overwintering survival even when
thermal winter conditions are known
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Gulf of Alaska




2019 Marine heatwave

NOAA/NWS /NCEP /EMC Marine Modeling and Analysis Branch Oper H.R.
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>2°C temperature anomalies over much of the Gulf of Alaska in October 2018
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