Marine environment induced spatial dynamics of recruited walleye pollock juveniles (*Theragra chalcogramma*) and interactions with preys and predators in Pacific coast of Hokkaido, Japan

Fisheries Research Agency

Hokkaido National

Fisheries Research Institute

Naoki Tojo

(Laboratory of Marine Ecosystem Change Analysis: LaMECA)

Akira Nishimura

Satoshi Honda

Tetsuichiro Funamoto

Seiji Katakura

(Hokkaido National Fisheries Research Institute,

Fisheries Research Agency: FRA)

Kazushi Miyashita

(Hokkaido University)

Fall...

Cooking fall 2006 data today

Walleye pollock in Pacific coast of Hokkaido

Largest population Copepods along coast of Japan Summer 2005

- Doto area = feedingarea for juveniles
 - Summer...from south, migrate into Doto area
 - Higher production with larger planktons

Doto area

- Offshore oyashio flow from northeast
 - Cold and less saline water...productive
 - Spatial extent is smaller in fall
- Coastal current
 - Affected from kuroshioorigin warm current clockwisely flow around Hokkaido
 - Generally more warm and saline compare to offshore in fall-winter

Goals

To capture the spatial dynamics of the recruited walleye pollock in Doto area in fall

From found dynamics, discuss the causal mechanisms from association to the environment

Where?
Why?

Study area and survey

- 42-43N, 143-145E
- On shelf (depth: 0-200m)
- August 28th –
 September 6th 2006
- EK60 (SIMRAD)
 - 38kHz, 120kHz
- Bottom trawl (28 st.)
- FMT and Bongo net
- CTD (Temperature and Salinity: 36 st.)

Data collection

(Everson et al. 1993, Miyashita et al. 1997)

- Juveniles...obtained ΔMVBS from fish schools where sampling trawl confirmed >97% of catch is 0-age pollock
- Planktons (potential foods)...obtained ΔMVBS from models (<u>Euphausids</u>: DWBA, <u>Small planktons</u>: High-pass sphere)

Environmental data processing

 $(1000m \times depth)$

Ordinal kriging interpolation (ArcGIS ver. 9.1)...RMS<0.5°C(Temp.), <0.06(Sal.)

Analyses

- Calculation of energy consumed
 - specific location
- Observation of associations between fish and Variables
 - environment, potential foods, and "cost"
- Test of associations to variables
 - Kendall's rank correlation coefficient
 - Generalized additive regression

– as index of cost being at the
$$C=AcW^{Bc}f_{(T)}P$$

Ciannelli et al. 1998

C: energy consumed (g/g/day)

Ac: Intercept of the allometric

function

Bc: Slope of the allometric

function

F(T): Function of optimum and maximum temperature for the

fish

P: Proportion of maximum consumption (=1, this time)

Results

- Fish concentrateEastern Doto(>144.3E:Kushiro)
- Some extreme in western edge (Erimo)

Results

Small planktons average density

E.pacifica average density

Near-shore "Mirror image"

Results

Small planktons density vs. fish

E.pacifica density vs. fish

Finer scale...not obvious associations

Results (general trend: Kendall's τ)

Kendall's rank correlation coefficient with average pollock density in each water column (under an 1-km section of the transect)

	T	Р
Temperature	0.17	≤0.001
Salinity	-0.12	≤0.001
Consumption	0.17	≤0.001
E.pacifica density	-0.24	≤0.001
Small plankton density	-0.33	≤0.001

- Temperature and consumption had positive association to juvenile abundance in the water column
- Salinity and food density had negative association to juvinile abundance in the water column

Results (Important determinant: GAM)

- Salinity showed significant relationship to explain presence or absence of juvenile pollock (P<0.05)
- Correlation b/w temperature and salinity

Discussion

- Salinity did matter...occurrence trend in offshore origin water
- Less saline and warmer water; more fish in water column... distribution environment is offshore oyashio environment extended to nearshore/shallow area

Discussion

- Why were juveniles more in the eastern Doto?
 - Larger planktons such as Euphusids transported from north
 - Juveniles in fall is larger...Euphausids = better food for them
 - Less "cost" to be in the eastern Doto in fall
- But, more juveniles in "poor" water column in finer scale!
 - Something is making them to do so
- Why were more juveniles in "expensive" water column?
 - If there are enough food source filling their needs (benefit), potentially more growth: C=R+F+U+Growth(Winberg, 1956)
 - Also, different cost or risk might make them do so

Discussion

- Interaction with larger fishes from offshore
 - Occupying where the food condition is better
 - Predations

Adult pollock and Arrowteath Flounders CPUE (quartiles: kg/min. tow)

Next

- Quantification and test of cost-benefit-risk relationship in the juvenile distribution
- Time-series analysis
 - Spatio-temporal dynamics of CBR relationship
 - Offshore/nearshore oyashio dynamics

Finding migration passages and habitats for specific

size classes...modeling

He needs help

From "C-B-R" relationship, hope to provide a tool to balance of future fishing CBR and efficient management!

Acknowledgements

- Many thanks are extended to captain and crews of R/V No.7 Kaiyo Maru
- Also, technical assistances from the Nihon Kaiyo staff
- Personal advices from Dr. Orio Yamamura and Dr. Hiroki Yasuma