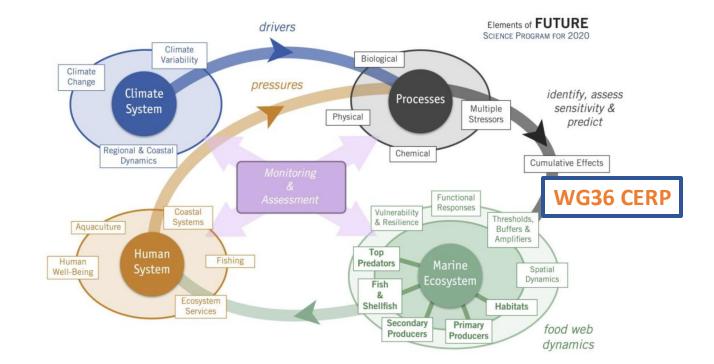

FUTURE Common Ecosystem Reference Points

WG 36 members: Robert Blasiak (Japan), Jennifer Boldt (Canada), Elliott Hazen (USA), <u>Mary Hunsicker (USA)</u>, Vladimir Kulik (Russia), Jongseong Ryu (Korea), Xiujuan Shan (China), Shion Takemura (Japan), Kazumi Wakita (Japan)


> PICES Annual Meeting – FUTURE Symposium October 28, 2024

FUTURE Common Ecosystem Reference Points

Thresholds can help inform reference points

Common Ecosystem Reference Points

F U T U R E 🖳

Science Program

PICES

Terms of Reference (TOR)

1. Review status of ecosystem reference points across PICES member nations

2. Determine a subset of ecosystems and indicators that are the focus of working group activities

3. Provide an overview / select methods for identifying thresholds in pressure - ecosystem response relationships

4. Determine shapes of pressure - response relationships and quantify ecosystem thresholds

5. Identify potential leading indicators of loss of resilience and ecosystem change

6. Develop "heuristic models" to examine drivers and ecosystem response based on ecosystem reference points

Terms of Reference (TOR)

1. Review status of ecosystem reference points across PICES member nations

FUTURE's research theme questions:

1. What determines an ecosystem's intrinsic resilience and vulnerability to natural and anthropogenic forcing?

What thresholds associated with maintaining ecosystem resilience?

5. Identify potential leading indicators of loss of resilience and ecosystem change

6. Develop "heuristic models" to examine drivers and ecosystem response based on ecosystem reference points

Terms of Reference (TOR)

1. Review status of ecosystem reference points across PICES member nations

FUTURE's research theme questions:

2. How do ecosystems respond to natural and anthropogenic forcing, and how might they change in the future?

How do these forcings affect the processes underlying ecosystem structure and function?

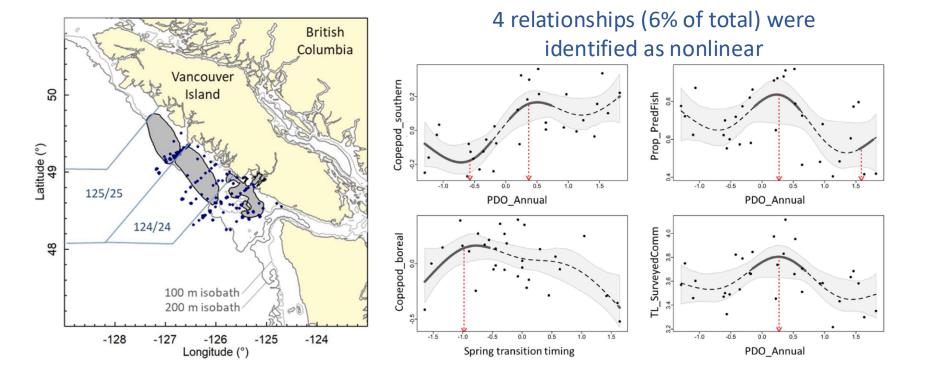
6. Develop "heuristic models" to examine drivers and ecosystem response based on ecosystem reference points

TOR 2: Selection of Indicators

Member nations	Environmental pressures	Human pressures	Ecosystem responses
Canada	PDO, NPGO, SST, ENSO, spring transition, upwelling	Tot landings, catches of different groups, Pel:Demersal catch	Copepod biomass, sea lion, abundance, Biomass of several fish groups, TL, mean lengths
China	SST, salinity, nutrients	Tot landings by taxa, TL, habitat	Stock biomass, mean TL, key/dominant species
Japan	SST, current velocity and direction	Catches of different groups,	Stock abundance
Korea	PDO, MEI, SST, Salinity, Nutrients	Tot landings, landings of different species	Copepods, euphausiids, zooplankton biomass
Russia		Catches of different groups	TL, Mean trophic index
USA	PDO, NPGO, ONI, SST, upwelling, nitrate flux	Total landings; coastal pelagics and groundfish landings	Seabird reproductive success; sea lion pup growth, production, juvenile fish, larval fish, copepod abundance

Build upon indicators identified via WG-28, WG-35, and the HD committee

TOR 3: Selection of methods

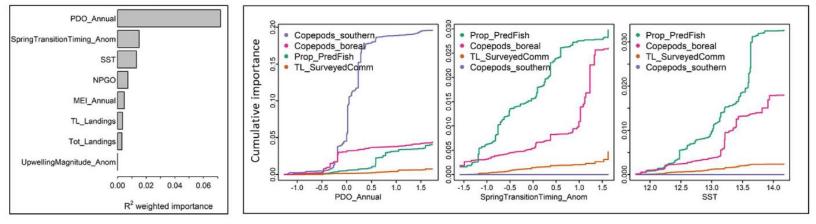

> Identify nonlinear relationships and quantify management relevant thresholds:

- Generalized Additive Models (2 regions)
- Gradient Forest Analysis (2 regions)

> Assess status/trends of indicators, evaluate relative changes over time:

• Dynamic Factor Analysis (4 regions)

TOR 4: Generalized Additive Models (WCVI)

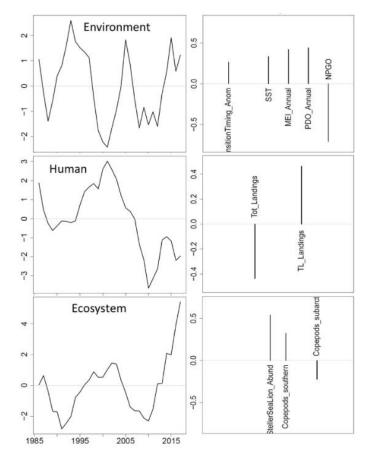


Boldt et al. 2021 Ecological Indicators

TOR 4: Gradient Forest Analysis (WCVI)

Cumulative

7 relationships (12% of total) were identified as nonlinear



Results from GAM and Gradient Forest were largely in agreement

ecosystem responses

Boldt et al. 2021 Ecological Indicators

TOR 4: Dynamic Factor Analysis (WCVI)

DFAs were applied to time series to:

1) identify common trends in indicators

2) assess their status and trends, and

3) discuss implications of trends

Boldt et al. 2021 Ecological Indicators Hunsicker et al. 2022 PLOS Climate

Some key challenges to identifying CERP

- Differences in the types and availability of time series
- Differences in expertise and experience with methods
- Inconsistency in methods applied across ecosystems
- Small number of thresholds identified

We persevered through the COVID-19 pandemic!

- Inclusive of all member nations, increased international collaboration
- Multiple topic sessions, workshops, two manuscripts
- Capacity building via exchange of knowledge and skills
 - GitHub repository open source R code
- Skills and tools brought back to member countries and applied

Advancing EAFM for Pacific herring

Canada	
Sciences des écosystèmes et des océans	
	Canadian Science Advisory Secretariat
	Science Response 2024/001
	LICATION OF MANAGEMENT
	et des océans

Tools were used to develop science advice to fisheries managers through DFO's Canadian Science Advisory Secretariat process

Supporting movement toward EAFM/EBFM on U.S. west coast

NOAA Fisheries Ecosystem Based Fishery Management Road Map

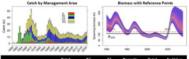
deReynier, Harvey, Link, Morrison et al. 2024

PERSPECTIVE

Ecosystem-level reference points: Moving toward ecosystem-based fisheries management

Wendy E. Morrison¹ | Stephanie A. Oakes² | Melissa A. Karp² | Max H. Appelman¹ | Jason S. Link³

Marine and Coastal Fisheries (2024)


Ecosystem and Socioeconomic Profile (ESP)

Stock Assessment & Status Bering Sea/Aleutian Islands and Gulf of Alaska stock with custom statistical catch-at-age mode

 Benchmark assessment in 2016 included CIE recommendations to 1) account for whale depredation on the survey and fishery, and 2) propagate more structural uncertainty of management quantities.

Year	ABC	OFL	Total Biomass	B/ B_MSY	F_MSY	Recruits (mill #s)	Total Catch	Ex-Value (mill \$)
2015	13,657	16,128	188,000	0.66	0.78	26,63	10,970	100.6
2016	11,795	15,397	170,000	0.63	0.78	163.65	10,257	98
2017	13,083	15,485	206,000	0.60	0.88	123.44	12,270	123.5
2018	14,957	29,507	515,000	0.59	0.77	12.47	14,341	93.7
2019	15.068	32,798	414,000	0.66	0.58	17.5	16,624	73.6

This stock is not subjected to overfishing, currently overfished, nor approaching an overfished condition.

Risk Tables

	Ecosystem/ Environmental conditions	Assessment data inputs	Assessment model fits and structural uncertainty
Level 1: favorable			
Level 2: neutral			
Level 3: unfavorable			

A risk table to address concerns external to stock assessments when developing fisheries harvest recommendations

Martin W. Dorn and Stephani G. Zador

Acknowledgments

- Steven Bograd
- Sukyung Kang
- FUTURE SSC
- Hal Batchelder

Sonia Batten Jackie King Sanae Chiba Rosalie Rutka Julia Yazvenko

