

Frontogenesis Elevates the Maximum Chlorophyll a Concentration at the Subsurface POC-P-17965 Near the Kuroshio During Well-Stratified Seasons

Daiki Ito¹ · Taketoshi Kodama^{1,*} · Yugo Shimizu¹ · Takashi Setou¹ · Kiyotaka Hidaka¹ · Daisuke Ambe¹ · Sayaka Sogawa¹ (1: Fisheries Research and Education Agency, Japan; *: Now at the University of Tokyo)

Frontogenesis improves primary productivity

- Frontogenesis is the development of oceanic fronts due to background deformation flows.
- Frontogenesis is accompanied by vertical currents and induces nutrient supply to the surface layer (e.g., Mahadevan 2016).

Does frontogenesis support productivity in the Kuroshio region during well-stratified season?

- The Kuroshio region has high biological productivity despite being in the subtropics and is a good spawning and nursery ground for pelagic fish (e.g., Okazaki et al. 2019).
- Limited studies have examined the contribution of frontogenesis to the productivity based on *in-situ* observation.
- \rightarrow We examined the impact of fronts and frontogenesis on the distribution of subsurface chlorophyll a maximum (CHL_{SCM}).

Schematic of nutrient supply and CHL_{SCM} increase caused by frontogenesis

I. Increase of CHL_{SCM} near the front

- Intensive survey by R/V *Soyo-maru* on 26 August 2019
- T and S by CTD, u and v by the shipboard ADCP
- Analysis of discrete water samples: Nitrate and CHL
- The western side of the meander crest of the Kuroshio was zonally traversed (Horizontal resolution: ~ 9 km)

- Convergent flow in the cross-front direction
- Convex upward nitracline across isopycnals (~ 30 km)
- Particularly high CHL_{SCM} above the convex nitracline
- Diffusive upward nitrate flux: $F = \frac{\Gamma \varepsilon}{h} N_z$

Assuming that $\Gamma = 0.2$ (Osborn 1980) and $\varepsilon = 10^{-8}$ m² s⁻³ (e.g.,

Key Points:

- Frontogenesis supplies nutrients and increases subsurface chlorophyll *a* concentration.
- Chlorophyll *a* concentration is positively correlated with the strength of fronts and frontogenesis.
- Subsurface chlorophyll *a* concentration is estimated using satellite-derived geostrophic velocity.

References

Mahadevan, A, 2016, Annu. Rev. Mar. Sci., 8(1), 171–184. Okazaki, Y, et al., 2019, Geophysical Monograph 243, 245–256. Osborn, TR, 1980, J. Phys. Oceanogr., 10, 83-89. Kaneko, H, et al., 2012, Geophys. Res. Lett., 39, L15602. Hirose, N, et al., 2019, Ocean Dyn. 69, 1333–1357. Hoskins, BJ, 1982, Annu. Rev. Fluid Mech., 14, 131–151.

✓ The main results of this study have been published in JGR Oceans: Ito, D, et al. 2023, J. Geophys. Res.: Oceans, 128(5), e2022JC018940.

Kaneko et al. 2012), F was estimated as 10^{-6} mmol N m⁻² s⁻¹ (an order of magnitude larger than that outside the Kuroshio).

II. Occurrence of Frontogenesis

- MOVE/MRI.COM-JPN reanalysis data set developed by Japan Meteorological Research Institute (Hirose et al. 2019) on 26 August 2019
- Resolution of 1/33° zonally and 1/50° meridionally (~2 km)
- To examine the frontogenesis, we calculated the time evolution of horizontal buoyancy gradient ($b = -g\rho/\rho_0$) (Hoskins 1982):

 $\frac{D}{Dt}\nabla b = \begin{bmatrix} -u_X b_X - v_X b_Y \\ -u_V b_X - v_V b_V \end{bmatrix} \equiv \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} = \mathbf{Q}$ $T_F = \frac{1}{2} \frac{D}{Dt} \left\| \nabla_h b \right\|^2$

- Since the Kuroshio roughly flowed along meridians, we focused on the evolution of the zonal gradient $(b_x < 0; Q_1)$.
- Stretching $(-u_X b_X < 0)$ and tilting $(-v_X b_V > 0)$ contributed to the increase of negative zonal buoyancy gradient ($Q_1 < 0$; i.e., frontogenesis).
- Even considering the meridional evolution (Q_2), frontogenesis occurred ($T_F > 0$).
- Frontogenesis largely detected by Lateral strain rate (α) calculated from SSH.

III. Empirical model of frontogenesis, nitrate, and CHL_{SCM}

Summer and fall 10 cruise from 2014 to 2018 along 138°E (174 profiles) CTD, ADCP, and water samples (horizontal resolution: 50–100 km) Relationship between frontogenesis, nitrate, and CHL_{SCM} (Fig.) Generalized linear model (GLM) analysis was performed to verify the significant contribution of the variables to the CHL_{SCM} distribution $(b_{v \max}: \text{maximum value of absolute } b_v, D_{\kappa}: \text{Distance from the Kuroshio axis, } \beta: \text{Intercept}):$ $Z_{\rm SCM} = glm(SSH + b_{\rm V_{max}} + \alpha + D_{\rm K} + \beta)$ $Z_{\text{SCM}} = glm(Z_{\text{N}_1} + b_{\text{y}_{\text{max}}} + \alpha + D_{\text{K}} + \beta)$

- The shallower the depth of nitracline (Z_{N1}) , the shallower Z_{SCM} and the larger is CHL_{SCM}.
- The stronger the front (i.e., the larger $b_{y_{max}}$) and the deformation (i.e., the larger α), the shallower Z_{N1} and Z_{SCM} , and the larger is CHL_{SCM}.
- GLM analysis showed that the estimation accuracy of SCM distribution is improved by considering the dynamical features obtained from *in-situ* and satellite observations ($b_{y_{max}}$ and α); that is, Z_{SCM} becomes shallow and CHL_{SCM} becomes large when strong fronts exist, and frontogenesis occurs.

(a) $Z_{\text{SCM}} \sim \text{gm}(\text{SSH} + \theta_{y \max} + \alpha + \beta)$				
β	21.67 ± 3.89	5.588	1.04×10^{-7}	
$b_{y \max} \times 10^5$	-7.42 ± 1.32	-5.62	8.90×10^{-8}	7%
$\alpha \times 10^6$	-3.79 ± 2.17	-1.75	0.0822	1%
SSH	0.399 ± 0.030	13.154	$< 2 \times 10^{-16}$	39%
(b) $Z_{\text{SCM}} \sim \text{glm}(Z_{\text{N1}} + b_{y \max} + \alpha + D_K + \beta)$				
β	25.8 ± 3.5	7.3	1.53×10^{-11}	
$b_{y \max} \times 10^5$	-2.46 ± 1.40	-1.755	0.0812	0%
$\alpha \times 10^6$	-4.38 ± 1.60	-2.749	0.0067	1%
D_{K}	1.85 ± 0.98	1.894	0.0601	1%
Z _{N1}	0.533 ± 0.042	12.576	$< 2 \times 10^{-16}$	25%

- difference of DE from the least-AIC model and those in
- DF of the models were> 62.8%