

Unraveling the formation mechanisms of marine heatwaves in the Northeast Pacific

Prof. Fei CHAI

Xiamen University

Huan-Huan Chen (SIO and ZJU), Yuntao Wang (SIO) Peng Xiu (XMU), Xichen Li (IAP), and several others

- **02** Data & Methods
- **03** Local processes causing the "Blob"

04 Remote drivers of marine heatwaves

05 Brief summary

Chen, Wang, Chai et al. 2023, npj CAS

Chen, Wang, Chai et al. under review, npj CAS

Marine Heatwaves (MHWs) : A discrete prolonged anomalously warm water event

(Oliver et al., 2018)

The "Blob"

Multi-year persistence from late 2013 to early 2016

Data and Methods

Data

- > Observation/Reanalysis Data:
- SST:

 $\mathsf{ERA5}\smallsetminus\mathsf{HadISST}\smallsetminus\mathsf{ERSST}\,\mathsf{V5}\smallsetminus\mathsf{OISST}\,\mathsf{V2}$

- ocean currents and temperature:
 GODAS and SODA
- atmospheric variables:

ERA5、NCEP/NCAR、OAFlux、HadCRUT5

> Models:

ROMS: Regional Ocean Modeling System CAM5: the Community Atmosphere Model, version 5

Methods

- Lanczos filter, regression and correlation analysis
- Mixed layer heat budget

Term III Term IV: Residual $\frac{\partial T}{\partial t} = \frac{Q}{\rho C_p h} - u_a \cdot \nabla T - \left(w_h + \frac{dh}{dt}\right) \frac{T - T_h}{h} - \frac{\kappa}{h} \frac{\partial T}{\partial z}\Big|_{z=h}$ Term I Term II (Cronin et al., 2015)

Term I: Mixed layer average temperature tendency Term II: Net air-sea heat flux Term III: Horizontal advection Term IV: Residual

Local processes causing the Blob

Observations and driving mechanisms of the Blob

The atmosphere forces the SST changes in the NE Pacific

Heat Budget analysis

- In climatological winter (Oct-Jan), MLT change is -5.4 °C
 In 2013/14 winter, MLT change is -2.8 °C, a decrease of approximately 48.2%
- Heat loss by advection was close to zero in 2013/14
- Entrainment (residual) was close to average
- Net air-sea heat Flux loss was lower than average in 2013/14
- Seasonal values of the Mixed Layer temperature change from October to January

Reduced heat losses by surface fluxes and horizontal advection were the dominant contributors to the Blob

Net air-sea Heat Flux

Q = SW + LW + LH + SH

Radiative heat flux: Lw: Longwave radiative flux Turbuler

Turbulent heat flux: LH: Latent heat flux

Sw: Shortwave radiative flux

SH: Sensible heat flux

- > In climatological winter, the heat loss from ocean to the atmosphere is -84.16 w/m²,
- > In 2013/14 winter, net air-sea heat flux is -42.91 w/m², the ocean reduces heat loss by 41.25 w/m², approximately 49%
- > Turbulent heat fluxes (LH and SH) dominated the anomalous air-sea heat flux, accounting for approximately 85.5% (-35.3 w/m²)

Decomposed Turbulent Heat Flux

 $LH' = \rho_a LC_E U'_{10}(\overline{q}_s - \overline{q}_a) + \rho_a LC_E \overline{U_{10}}(q'_s - q'_a) + \rho_a LC_E U'_{10}(q'_s - q'_a)$ $SH' = \rho_a C_p C_h U'_{10}(\overline{T}_s - \overline{T}_a) + \rho_a C_p C_h \overline{U_{10}}(T'_s - T'_a) + \rho_a C_p C_h U'_{10}(T'_s - T'_a)$

(Tanimoto et al., 2003)

- Term Iderived from wind speed anomalyTerm IIderived from air temperature/moisture anomalyTerm IIInonlinear effect
- The turbulent heat flux depends on wind speed and air-sea temperature/humidity difference

Decomposed turbulent heat flux during winter

In the winter of 2013/14, turbulent heat flux anomalies caused by air temperature anomalies (moisture anomalies) accounted for 69.3%

Model set-ups and experiments

- ➢ Model: ROMS
- ➢ Vertical level: 30 layers
- Horizontal resolution:1/8°
- ➤ Initial: WOA09
- ➢ Forcing: NCEP reanalysis;

NOAA blended winds

Experiments:

- Control: real forcing
- Case1: Climatological air temperature
- Case2: Climatological winds

Mechanisms of The Blob

Modeled SST and ocean temperature anomalies in Feb 2014

Poleward winds bring warm and moist air to increase air temperature/humidity

Local Drivers of the Blob

Wind direction change instead of intensity change is more important

Remote drivers of marine heatwaves

Characteristics of Winter SAT and MHWs in the NE Pacific

Linear trend in winter surface air temperature and MHW days from 1979-2021

Study region:

- East Siberian-Chukchi Sea (ES-CS, 160° E-160° W, 70-80°N)
- Northeast (NE) Pacific: 140-170° W, 30-50° N

- Significant warming in the Arctic during the winter of 1979-2021; The warming trend and oscillations strengthened after mid-1990s
- Annual (pink) and winter (red) MHW days (1979-2021) in the NE Pacific increased at a rate of 4.67 days/yr and 0.97 days/yr, respectively
- Most MHWs (annual: 84%; winter: 87%) mainly occur after mid-1990s

Teleconnection between Arctic warming and NE Pacific SST

 Winter ES-CS warming can cause positive SSTa in the NE Pacific
 A significant correlation between the winter ES-CS SAT anomaly and the NE Pacific SSTa, the correlation has been strengthened since mid-1990s

Correlation between ES-CS SATa and NEP SSTa

Time span	ERA5	ERSST V5	HadISST
1979~2021	0.36*	0.42**	0.41**
1995~2021	0.40*	0.47*	0.48*
1979~1994	Insignificantly correlated		

*95%, **99% confidence level

ES-CS warming can form an abnormal high-pressure system over NE Pacific and result in anomalous easterly winds

> This anomalous high-pressure system is a key condition for the formation of MHW in the NE Pacific

Model set-ups and experiments

Model set-ups

- ➤ Model: CAM5
- Vertical level: 17 layers
- Spatial resolution: f19_f19(~2°)
- Time resolution: monthly
- **Time span:** 1979.01-2021.12
- Model runs: includes 12 ensemble members, each ensemble member is driven by the observed SST over the Arctic region (north of 65°N) with 10° buffer zones on its boundary.
- Experiment (fn25): to test the hypothesis, the SSTs outside Arctic are set to climatological mean state over the period 1981–2010.

Validation by CAM5 experiment

Simulated winter U-wind at 850hPa responses

> ES-CS warming indeed alter the NEP atmospheric circulation, with a spatial correlation **0.63** (*p*<0.01) against observations

ES-CS warming significantly weakens the westerlies over the NE Pacific

Physical processes drive NE Pacific warm events in winter

Regression of DJF mixed layer heat budget terms with ES-CS SATa

(Cronin et al., 2015)

two dominant processes to the weakened wintertime cooling

Mechanisms of MHWs in the NE Pacific

MHWs caused by Arctic warming

Summary

Thank you

Take Home Messages

Local processes:

Reduced heat losses by surface fluxes and horizontal advection were the dominant processes to the Blob
 Wind direction change instead of intensity change is more important *Chen, Wang, Chai et al. 2023, npj CAS*

Teleconnection:

- The ES-CS warming indeed alter NEP atmospheric circulation
- The abnormally high-pressure system weakens the westerlies, thereby reducing the wintertime cooling in the NE Pacific

Chen, Wang, Chai et al. under review, npj CAS