A new approach to integrate multiple environmental covariates into state-space stock assessments

PICES annual meeting

Session 11

Impacts of warming-induced changes in body sizes on marine fish ecology and their consequences for ecosystems and associated fisheries

10/30/24

Juliette Champagnat

Collaborators: Cole Monnahan, Lauren Rogers, Andre Punt,

Kalei Shotwell, Jane Sullivan, James Thorson

Challenges in stock assessment models

 \Rightarrow Accounting for productivity changes

Perspectives & Discussion

Challenges in stock assessment models

 \Rightarrow Accounting for productivity changes

Data

Method name

AR1

iid

Graphical representation

Parameters $\mu(1), \qquad \mu(1), \qquad \sigma(1), \qquad \sigma(1), \qquad \sigma(1), \qquad \rho(1)$

Data

Results

Perspectives & Discussion

New approach with DSEM

•Dynamic structural equation model = causal modelling

RESEARCH ARTICLE

ethods in Ecology and Evolution 📑 📰

Dynamic structural equation models synthesize ecosystem dynamics constrained by ecological mechanisms

James T. Thorson¹ | Alexander G. Andrews III² | Timothy E. Essington³ | Scott I. Large⁴

- •Allow estimation of multiple interactions (simultaneous & lagged) between variables
- •Using GMRF to represent the interactions & fitting as a GLMM

 Consider measurement errors in data + handle Nas + non-normal distributions of data

•Estimation in TMB framework (quick)

=> derived quantities (population status)

ContextMethodsCase studyDataResultsPerspectives & DiscussionBenefit of coupling DSEM with stock assessment

	Legend						
X	Process from a population model						
X	Variable						
-	Causal effect (lag=0)	3	AR1				
\rightarrow	Causal effect (lag=1)	3	iid				

Methods

Case study

Data

Results

Perspectives & Discussion

Case study

- Walleye pollock in the Gulf of Alaska
- Custom stock-assessment model in TMB
- Focus on recruitment
 - Abundance of age 1 fish
 - No stock-recruitment curve (mean hypothesis for forecast)
 - Lot of variability
- Ecosystem and Socioeconomic Profile (ESP) available
 - Identify important ecological variables

-0.05

1980

1990

2000

2010

2020

Case study

Results

Data

ESP dataset

- Predators/competitors biomass
- Physical variables

- Biological variables
- Spatiotemporal indicators

Context Methods

Data

Full causal map

Context Methods

Data

Results

Perspectives & Discussion

Full causal map

Cannot model all links ⇒ Need simplification

ContextMethodsCase studyDataResultsPerspectives & DiscussionEstimation of causal links \longrightarrow No lag $-- \rightarrow$ 1 year lag

+ stock assessment data & hypotheses

Output: Value of the link

Significance of the link

* (pvalue <0.05),** (pvalue <0.03), ***(pvalue <0.01)

 Context
 Methods
 Case study
 Data
 Results
 Perspectives & Discussion

 Recruitment estimation and forecast

R is informed by the causal map

R is not informed by the causal map -> equivalent to usual assessment model

- Slight change of R estimation in the past
- Reduced R forecast

Data

Model validation

Is the model wrong?

- Are parameters and derived quantities biased?
- \Rightarrow Self test \checkmark

Is the model useful?

Results

- Is the causal map improving the recruitment predictions?
- = Predictive performance
- \Rightarrow 1 year ahead predictions \checkmark

 Context
 Methods
 Case study
 Data
 Results
 Perspectives & Discussion

 Estimation of ESP time series
 Figure 1
 Figure 2
 Figure 2

• ESP data

Conclusions

- It works !
 - Significant causal link
 - Reduced recruitment variance
 - Good self-test behavior (no bias)
 - Good predictive performance (AIC, 1y ahead prediction)
 - Quick to run (~2min)

- \Rightarrow flexible framework resolving the regression paradigm
- ⇒ path forward for next-generation climate-linked assessment models
- \Rightarrow direct use of ESP data

ContextMethodsCase studyDataResultsPerspectives & DiscussionNext steps

 Build workflow & good practices regarding causal map development Context Methods

Results

How to develop a causal map?

Context Methods

How to develop a causal map?

Data

Results

How to develop a causal map?

ContextMethodsCase studyDataResultsPerspectives & DiscussionNext steps

- Build workflow & good practices regarding causal map development
- Test the DFA functionality for coupled assessment-DSEM model

Name	iid	AR1	Smoothed Ecov regression	DFA	SEM	Cau
Causal map	PJ	P	AP BP	AT BT CT DT	A B B B B B B B B B B B B B B B B B B B	P.
SEM	$P \leftrightarrow P, 0$	$P \rightarrow P, 1$	$A \leftrightarrow A, 0$ $B \rightarrow B, 1$ $A \rightarrow P, 0$ $B \rightarrow P, 1$	$F \rightarrow F, 1 F \rightarrow C, 0$ $F \rightarrow A, 0 F \rightarrow D, 0$ $F \rightarrow B, 0 F \rightarrow P, 1$	$C \leftrightarrow C, 0$ $D \rightarrow D, 1$ $C \rightarrow B, 0$ $D \rightarrow B, 1$	$P_2 \to P_2, 1$ $D \to P_2, 0$
Parameters	$\mu(1), \sigma(1)$	$\mu(1), \sigma(1), ho(1)$	$\mu(3), \sigma(3), ho(2), eta(2)$	$\mu(6), \sigma(6), ho(4), eta(5)$	$\mu(5), \sigma(5), \rho(3), \beta(4)$	$\mu(6), \sigma(6), ho(4), \beta(5)$
Software available	SAM	SS3* I WHAM		AssessDsem		

ContextMethodsCase studyDataResultsPerspectives & DiscussionNext steps

- Build workflow & good practices regarding causal map development
- Test the DFA functionality for coupled assessment-DSEM model
- Test sensitivity to causal map misspecification (& cumul with other model misspecifications)
- Extend to multiple processes within the same model (e.g., recruitment & growth or natural mortalities ...)
- Integration into a stock-assessment platform for broader dissemination

Thanks for your attention !

More information ?

⇒ reach out jchampag@uw.edu / juliette.champagnat@noaa.gov

Acknowledgements

- Co-authors: Cole Monnahan, Lauren Rogers, Andre Punt, Kalei Shotwell, Jane Sullivan, James Thorson
- ESP contributors
- Funding: UW/CISCOES

