Seasonal differences of Pacific herring larval and
embryo metrics are small, and proteomic analysis
holds promise for uncovering subtle changes in

physiology
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Pacific Herring are an important ecological,
cultural, and economic resource




Failure of late spawning population required a change of plans
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The revised study
compares early and late
spawning cohorts
withing a single
population.
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Compare Physiological and Molecular Profiles




WDFW surveyed every 10-14 days during the spawning
season, and we preserved each collection, culturing a
cohort to hatch when possible.
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Embryos had different developmental stages at time of
collection

B/C E/F 1/J
(5 cohorts) (2 cohorts) (3 cohorts)




Each cohort was maintained at
the average field temperature at
time of collection until hatch.




No significant differences in hatching success, larval
length, or yolk sac area at hatch seasonally

Yolk Sac Area ( mm 2)

=
£
=
B
B0
c
@
=
b=
©
=
c
©
e
w

February (7.1) March (7.3) April (8.4)

Month ( Temperature (°C))

W Standard length  m Yolk Sac Area




Total lipids were collected from embryos before and after culturing

Homogenization =———3> Extraction ——3 Analysis




Total lipids were not significantly different between years, temperatures, or
developmental stage
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Proteomics is an emerging field in marine science
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Samples were homogenized, digested, and analyzed to
discover proteomic results
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33 proteins in
embryos of the same
development had
different relative
abundance in Feb vs
April

Protein names

Dihydrolipoyllysine-residue succinyltransferase

RNA helicase (EC 3.6.4.13)

Plectin isoform X9

Zgc:55673 protein

LSM family member 14B (Protein LSM14 homolog B)
RNA helicase (EC 3.6.4.13)

YTH domain-containing family protein

Septin

Uncharacterized protein C7orf57 homolog isoform X1
ATP-binding cassette sub-family F member 3

(Solute carrier family 3 member 2b) (Zgc:55813)
Mitochondrial import inner membrane translocase subunit TIM23
(EC 2.3.1.85) (EC 3.1.2.14) (EC 4.2.1.59)

Cofilin-1 {(Muscle cofilin 2)
Sodium/potassium-transporting ATPase subunit alpha
protein 1)

WD repeat domain 3 (WD repeat-containing protein 3)

RMNA helicase (EC 3.6.4.13)
Polypyrimidine tract-binding protein 1

Mucleolar and coiled-body phosphoprotein 1
Histone deacetylase (EC 3.5.1.98)

Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)

GTPase activating protein (SH3 domain) binding protein
Polymerase delta-interacting protein 3 isoform X1
Carboxypeptidase (EC 3.4.16.-)

RMNA helicase (EC 3.6.4.13)

Caprin-1isoform X1

MNardilysin

Bromodomain adjacent to zine finger domain protein 14 isoform X2|
Histone H2B

RNA helicase (EC 3.6.4.13)
High density lipoprotein-binding protein a (Vigilin isoform X1)

More abundant
April vs. February

Less abundant
April vs. February



abcf3

/ STRING analysis helps identify

T e relationships between
| proteins that differ between seasons, and
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Proteins increased in relative abundance during embryonic
development

Total Identified in Embryos

m Down Regulated

m Up Regulated

Early vs Late Early vs Mid Stage Mid cs Late Stage Earlyvs Late Stage
Season Stage B/C B/Cvs F/G F/G vs H/I B/C vs H/I




To understand environmentally driven changes in the proteome, we must first map developmental changes
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Relative abundance of heat shock and other stress response proteins
generally increases with developmental stage
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Compare Physiological and Molecular Profiles

We did not discover
significant differences in
pacific herring physiology
and their biological
pathways only had subtle
differences.

Future research can use
the baseline of proteomes
from different
developmental stages to
distinguish developmental
and external influences
on proteomics.
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