Environmental Dynamics and Plankton Interactions in the Northern California Current

Kylie Cherneskie¹,

Dong Liang¹, Katie Lankowicz², Hongsheng Bi¹, Brian Wells^{3,4}, and Richard Brodeur⁴⁵

> University of Maryland Center for Environmental Science, Solomon's Island, Maryland, USA.
> Gulf of Maine Research Institute, Portland, Maine, USA
> NOAA Fisheries, Southwest Fisheries Science Center, Fisheries Ecology Division Santa Cruz, California, USA
> NOAA Fisheries, Northwest Fisheries Science Center, Newport, Oregon, USA.
> College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Newport, Oregon, USA

americanoceans.org

Key Background

- Northern California Current
- Upwelling system
 - Redistribution of nutrients
 - Supports phytoplankton blooms

ecowatch.noaa.gov

Aims of the Study

- Utilize high-resolution in situ imagery data
- Perform a spatial cluster analysis
- Examine and quantify fine-scale planktonic distribution
- Analyze distribution in relation to environmental gradients

Data Collection and the Planktonscope

- Coordinate data from handheld Garmin GPS
- Conductivity, Temperature, Depth (CTD) data
- Plankton count data from the Planktonscope imaging system

Plankton Groups of Interest

Bacillariophyceae (Diatoms)

Copepoda

Thaliacea (Salps)

Appendicularia (Larvacean)

Overview of Methods/Results

Temperature Salinity profile

Poisson point pattern analysis with covariates to model plankton counts

Distance to next encounter and patch statistic calculations

Number of patches and total plankton counts

Results

Temperature Salinity (TS) Profile of the Transect

- Typical temperature structure that shows the thermocline
- The surface waters have a lower salinity, while the deeper waters are more saline

Poisson Point Pattern Analysis with Covariate

Resource Selection Function: Depth

Depth Preference Schematic

Distance to Next Encounter (DNE) and Patch Statistic

Thaliacea

(Salp)

Distance to Next **Encounter:** All Plankton Groups

Number of Patches

Total Count

Insights Gained

- The separation between the depth ranges of the plankton groups suggests differences in hydrological processes are impacting the plankton interactions.
- The vertical patch statistic reflects vertical migration and trophic influence, while the horizontal patch statistic indicates the presence of plankton patches and the frequency of aggregation among groups.

Northern California Current Insights

- Copepoda primarily inhabit the upper water levels, overlapping with larval fish, highlighting important trophic interactions between plankton and fish.
- The project enhances our understanding of fine-scale interactions between physical and biological responses.

Acknowledgements

NOAA Fisheries, Oregon, USA, pre-recruit survey

NSF Grant #2224702

Graduate Education Committee (GEC) travel grant from University of Maryland Center for Environmental Science

PICES Early Career Scientist travel funds

Thank you!

