S04-17907

The FUTURE of PICES: Science for Sustainability in 2030

TOWARD DISCERNING **SUBMESOSCALE COHERENT VORTICES** ORIGINATING FROM TOKARA STRAIT IN THE **UPSTREAM KUROSHIO**

Silvana Duran¹, Takeyoshi Nagai¹

¹Tokyo University of Marine Science and Technology

October 31st, 2024

ANTICYCLONES IN SUBSURFACE LAYERS:

Vortex shedding (anticyclones $\zeta_z < 0$) of 10-km scale behind Hirase seamount.

Inoue et al (2024)

SUBMESOSCALE COHERENT VORTICES

- Retain water mass in their core
- Lifetime can be long
- They often move far from their origin: advected by mesoscale and/or mean current

Flow-topography interactions

SCVs in the Kuroshio-Oyashio Extension are mainly generated on the eastern continental slope of Japan through flow-topography interactions.

(Zhu et al. 2024)

Generation process of South China Sea SCV is similar to the island wakes.

(*Zhang et al. 2022*)

Objective

To discern the presence and/or generation of SCVs in the Tokara Strait behind the small islands in the Tokara Strait.

McWilliams (1985)

STRUCTURES IN SIMULATION

Regional Oceanic Modeling System (ROMS) - GRID 2 KM

- ✓ Monthly climatological wind from the Comprehensive Ocean - Atmosphere Data Set (COADS)
- \checkmark No tide
- \checkmark 500-m topography data
- ✓ K-Profile-Parameterization (KPP)

STRUCTURES IN SIMULATION

Regional Oceanic Modeling System (ROMS) - GRID 700 m

• Ratio > 5 km

Times

STRUCTURES IN SIMULATION

SNAPSHOT

- Vertical extent ~100 m
- Low PV values
- Low N² values
- Convex isopycnals

RELATED TO VERTICAL MIXING?

Nitrate diffusive flux (FNO₃) within detected eddies:

FNO₃

(-) ζ / f

Low PV

~ O(1) mmolm⁻²day⁻¹

POSSIBLE SOURCES OF SCVs

→ Overbars: 1-month average
→ Primes: deviations from 1-month average

Horizontal Shear Production

$$HSP = -\overline{u'^2}\frac{\partial\overline{u}}{\partial x} - \overline{u'v'}\frac{\partial\overline{u}}{\partial y} - \overline{v'^2}\frac{\partial\overline{v}}{\partial y} - \overline{u'v'}\frac{\partial\overline{v}}{\partial x}$$

Vertical Shear Production

$$VRS = -\overline{u'w'}\frac{\partial\overline{u}}{\partial z} - \overline{v'w'}\frac{\partial\overline{v}}{\partial z}$$

Vertical Eddy Buoyancy Flux

$$BF = -\overline{w'b'}$$

 $EPE \rightarrow EKE$

MKE \rightarrow EKE

POSSIBLE SOURCES OF SCVs

IN-SITU OBSERVATIONS

- Transect on June & July, 2023 of ~12h
- Tow-yo instruments:

A UVMP: Underway Vertical Microstructure Profiler 250 (ϵ) B SUNADAYODA: CTD, a chlorophyll-turbidity sensor, a nitrate sensor

NO₃ Flux =
$$-K_{\rho} \frac{dNO_3}{dz}$$

 $K_{\rho} = 0.2 \frac{\epsilon}{N^2}$

• Small values of Potential Vorticity (PV_{2D}) in the subsurface layers:

$$PV_{2D} = -\frac{1}{\rho_o} \left[\frac{\partial u}{\partial z} \frac{\partial \rho}{\partial y} + \left(f - \frac{\partial u}{\partial y} \right) \frac{\partial \rho}{\partial z} \right]$$

f: Coriolis parameter

 ρ : seawater density

u & *v*: parallel and normal velocity components to the ship track (*y* and *z* coordinates)

IN-SITU OBSERVATIONS

JUNE 2023 SST on June 14th, 2023 – CMEMS

- Low PV_{2D} values within convex isopycnal structures
- Dipole core (horizontal extent < 20 km)

IN-SITU OBSERVATIONS

JULY 2023 SST on July 12th, 2023 – CMEMS

- Low PV_{2D} values below $\sigma_{\theta} = 24$ kgm⁻³
- Intense FNO₃ in the surrounding of low PV

SUMMARY

VORTEX SHEDDING depends on **the Kuroshio axis position** in respect of small islands in the Tokara Strait

Origin: due to lateral shear (topography-current interaction)

Effects: Possible increase of nitrate diffusive fluxes FNO₃ ~O (1) mmol m⁻² day⁻¹

Observations: lens of low PV_{2D} related with dipole velocity cores at subsurface layers

NEXT STEP: DETECTION IN A WIDER IMAGE

NEXT STEP: DETECTION IN A WIDER IMAGE

NEXT STEP: DETECTION IN A WIDER IMAGE

Low PV lens variation behind small islands every year

According to the current position in respect of the islands

S04-17907

The FUTURE of PICES: Science for Sustainability in 2030

TOWARD DISCERNING **SUBMESOSCALE COHERENT VORTICES** ORIGINATING FROM TOKARA STRAIT IN THE **UPSTREAM KUROSHIO**

Silvana Duran¹, Takeyoshi Nagai¹

¹Tokyo University of Marine Science and Technology

October 31st, 2024