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® Gigatons of CO,-equivalent emissions (GtCO,-eq/yr)

Background: Climate Change and Mitigation

a) High risks are now assessed to occur at lower global warming levels
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Background: Contributions from the Ocean

To Increase the carbon absorption:
Ecosystem conservation and restoration
Artificial ocean fertilization
Sea water engineering

To provide the space for carbon storage:
CCS beneath sea bed

To reduce the anthropogenic carbon emission:

Providing carbon free energy
Offshore wind
Ocean energy




Background: Ocean Based CDR
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Sources: National Academies of Sciences, Engineering, and Medicine. 2021. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration.



Background: Ocean Energy
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Research Purpose

To design a conceptual system combining ocean energy utilization with a negative
carbon dioxide emission technology based on an offshore floating structure.

Main concepts

Energy resource: ocean thermal energy (OTEC)
Negative emission technology: microalgae cultivation and artificial upwelling
Economic activity: offshore aquaculture

Assessment
Carbon footprint calculation to examine the system capacity
An integrated index estimation to evaluate the sustainability performance
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System Components
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Figure 1. Schematic of an offshore o Wtake
closed-cycle OTEC system 5°C (41°F)

Sources: NOAA

OTEC

SST Generation Consumption Output
kW kW kW
19-20 9250 5200 4050
20-21 10650 5200 5450
21-22 12000 5200 6800
22-23 13350 5200 8150
23-24 14600 5200 9400
24-25 15800 5200 10600
25-26 16950 5200 11750
26-27 18000 5200 12800
27-28 19000 5200 13800
28-29 20000 5200 14800
29-30 20850 5200 15650
30-31 21200 5200 16000

Outputs of a 10MW OTEC (Deep sea water temperature 5.5°C)

Sources: Report on power generation demonstration toward advanced utilization of deep sea water (2015)
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Standardized Specific

Cultivation and
aquaculture area
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Production and
management
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Rescue facility
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Specific

Central float size
250*250m

Barge float size
50*50m

Barge float number
134

OTEC capacity
12.5MW

Design life time
S0 years

Microalgae
Euglena

Fish
Tuna




Assessment Methods

To evaluate the mitigation capability.

Life cycle carbon footprint

To evaluate the system sustainability

g = (EF = BC)+ (C - B)

EF:Ecological Footprint BC:Bio-capacity = C:Cost B:Benefit y: ration of EF to GDP

Cost Benefit

Replace the traditional production
Replace the fossil fuel
Ocean fertilization effect

Material production

Environment Operation

Economy Life time input Revenue of fish stock and fuels




Carbon Footprint Boundary
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Case Studies

Case 1. feasibility study in the South China Sea

Case 2. application potential analysis in east and southeast Asia

Case 3: application possibility in sub-tropic offshore area




Case 1: production and carbon footprint
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Fig.2.5 The geographical location of Woody Island

Operation period 265 days
Algal oil production 1,963t
Tuna production 2,400t
Total CO2 TOtE!I CO2 Annual CO2
e avoidance :
emissions reduction
and removal
1,801,256t 2,629,200t 16,500t




Case 1: system sustainability performance

700000

500000

300000

100000

-100000

EF . BC. Cost - Benefit « I jignte

(1,000gha) - (1,000gha) - (Billion Yen) - (Billion Yen) - (1,000gha) -

9.42 2932 - 7.81 4 6.63 - -18.41 -




Case 2: production and carbon footprint

1 2 3 4 3) 6 I
Operation period (days) 226 173 | 239| 265 279 363| 364
Algal oil production (ton) 1870 | 1495 | 1886 | 1823 | 20/0| 3052 | 3061
Tuna production (ton) 2287 | 1828 | 2306 | 2229 | 2531| 3732| 3742
Application - 1o 2. 3 4. 5 6« 7
CO2 emissions 1,772,249 . 1,655,765 1,777,255 1,758,059 1,834,443 . 2,138,394. 2,140,999 .
(tons) «
CO2 avoidance and 2,421,843+ 1,911,537 2477,136. 2,501,110 2,771,166+ 3,933,817 3,944,654 .
removal (tons) -
Annual CO2 12,992 - 5,115« 13,998 - 14.861 - 18,734 - 35,908 - 36,073 -
reduction (tons) -




Case 2: system sustainability performance

Application « e P 3o 4. 5 6 7o
EF (1,000gha) - 9.27 . 8.66 - 9.29 . 9.19 - 9.59 . 11.18 - 11.20
BC (1,000gha) - 25.87 - 20.08 - 26.95 - 28.70 - 30.88 « 41.77 - 41.88
Cost (Billion Yen) - 7.76 - 7.54 . 7.77 « 7.73 ¢ 7.88 ¢ 8.45 . 8.46 -
Benefit (Billion Yen) .  6.31. 5.05- 6.37 - 6.15 6.99 - 10.30 - 10.33 -
IIT 1300 (1,000gha) - -14.63 - -7.52¢ -15.77 - -17.29 - -20.35 - -34.71 « -34.86 -
Sustainable year - 24 . 33rd* 231d¢ 220d¢ 20 14tk 14tk
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Case 2: influence factor analysis
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Case 3: carbon footprint

: To combine a wind power generation system with
Option 1 :
a capacity of 11.2MW
. To scale up the OTEC capacity to 23MW
Option 2 ¥ pactly
. CO2 emissions (tons) « CO2 avoidance and removal (tons) « Annual CO2 reduction (tons) -
Option 1 « 1,646,705 - 3,839,000 - 43,846 -
Option 2 « 1,631,532 - 4,883,800 - 97,676 -




Case 3: system sustainability performance

;Applicati:::n P | Option 1 « i Option 2 -
EF (1,000gha) 8.70 - 8.64 -
;BC (1,000gha) - | 26.10 - ’ 37.45 .
Cost (Billion Yen) - 8.53 8.73 «
:Beueﬁt (Billion Yen) « 10.46 - i 11.19 -
T ji65: (1,000gha) - -19.84 - 3191+
;Sustaiﬂable year . 19t . | 1 5the




Sensitivity Analysis

Effect of ocean fertilization
Modified estimations by reducing the effect for several cases

Option 1 To combine a wind power generation system with
a capacity of 11.2MW
Option 2 To scale up the OTEC capacity to 23MW
¢ CO2 emissions; CO2 avoidance and removal =~ Annual CO2 reduction ' Annual economic benefit
(tons) « (tons) « (tons) « (Billion Yen) -
No. 6 in Section 3.2 » 2,138,394 - 2,791,394 - 13,060 « 1.85+«
No. 7 in Section 3.2 - 2,140,999 . 2,799,084 . 13,162 . 1.87
Option 1 in Section 3.3 - 1,646,705 - 2,706,050 « 21,187 « 1.93 -
Option 2 in Section 3.3~ 1,631,532+ 2,799,200 . 23,353 . 246




Summary

> A conceptual system iIntegrated ocean energy utilization, micro algae cultivation,
marine aquaculture, and biological productivity enhancement based on an offshore
floating platform was designed for the purpose of realizing negative CO2 emissions.

> The efficacy of removing CO2 was estimated by life time carbon footprint, and the
sustainability of the system itself was evaluated by introducing the inclusive index gy,
which is calculated based on ecological footprint, bio-capacity, cost and benefit.

> The assessment results of case studies suggested the system could be self sustained
and beneficial to climate change mitigation in large ocean area.

> Further examinations, especially from the viewpoints of the floating structure and
marine aguaculture, are essential to realize the concept.
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