

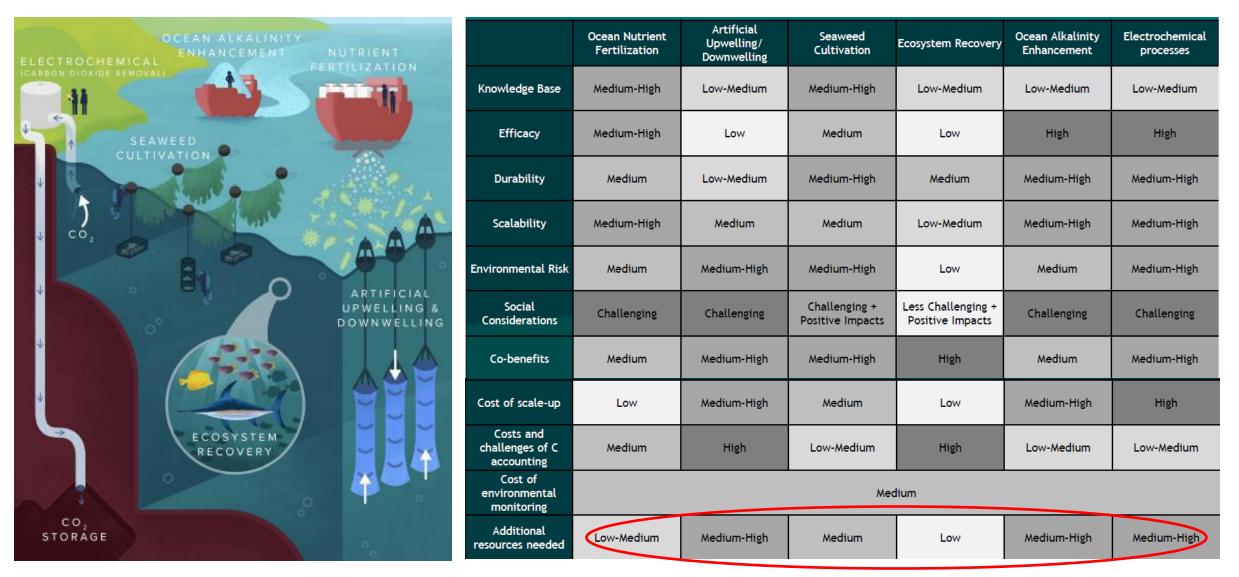
A Negative Emission Application Based on Floating Integrated System

Fengjun Duan

The Canon Institute for Global Studies

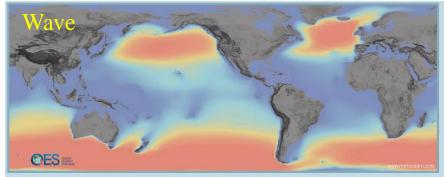
Background: Climate Change and Mitigation

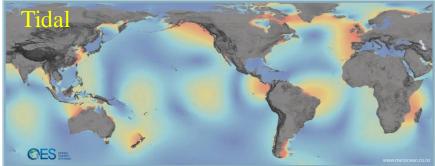
Sources: IPCC AR6


Background: Contributions from the Ocean

To increase the carbon absorption: Ecosystem conservation and restoration Artificial ocean fertilization Sea water engineering

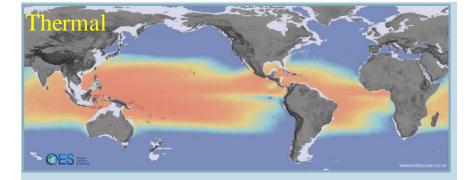
To provide the space for carbon storage: CCS beneath sea bed


To reduce the anthropogenic carbon emission: Providing carbon free energy Offshore wind Ocean energy


Background: Ocean Based CDR

Sources: National Academies of Sciences, Engineering, and Medicine. 2021. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration.

Background: Ocean Energy



Tidal Range	
Tidal range energy is potential energy derived by height changes in sea level, caused by the gravitational altraction of the moon, the sun and other astronomical bodies on oceanic water bodies. The effects of these tides are complex and most major oceans and seas have internal	TIDAL RANGE (cm)
tidal systems. The rise and fall of the tide (range) offers the opportunity to trap a high tide, delay its fall behind a barrage or fence, and then exhaust the potential energy before the next tidal cycle.	
The map shows the global pattern of the M2 tidal constituent, the principal lunar semidiurnal component.	
The worldwide theoretical power of tidal power (including tidal currents) has been estimated	

	35		
0	35	70	105

Theoretical Potential (TWh/yr)					
Wave	29,500				
Tidal	7,800				
Thermal	44,000				

Global electricity consumption (2022): 26,933 TWh

Ocean Thermal Energy

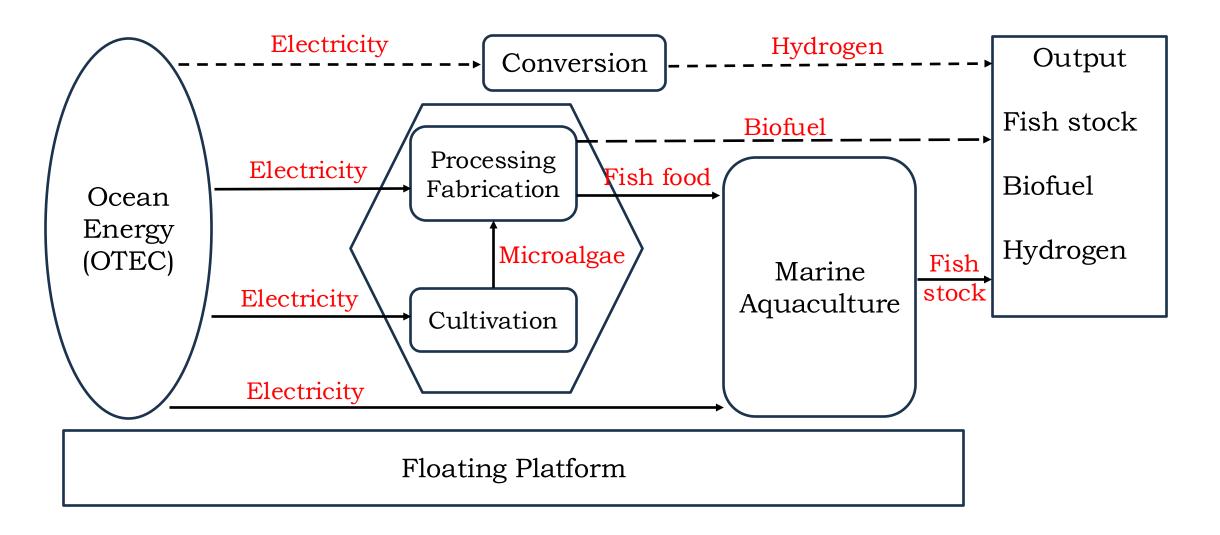
Ocan thermal energy arises from the temperature difference between near-tropical surface seawater, which may be more than 20°C hotter than the temperatures of deep ocean water, which tends to be relatively constant at about 4°C. Bringing large quantities of this cold seawater to surface enables a heat exchange process with the warmer surface waters, from which energy can be extracted.

The map shows the temperature difference between waters at 20m and 1,000m depths.

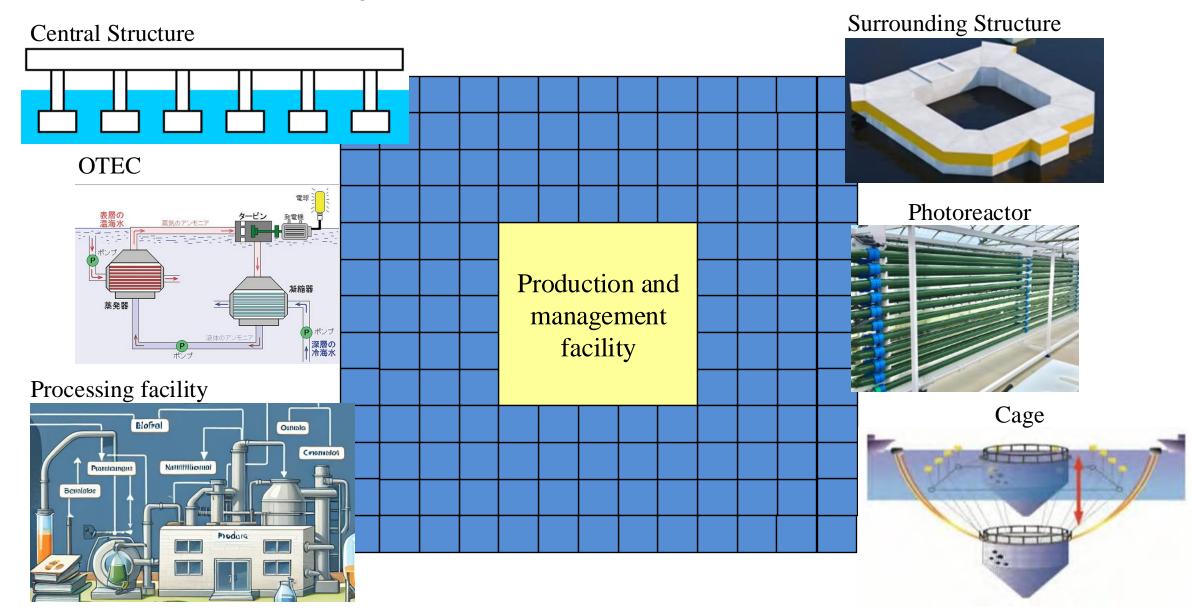
The worldwide theoretical potential of ocean thermal power conversion has been conservatively estimated at 44,000 TWh / year.

Research Purpose

To design a conceptual system combining ocean energy utilization with a negative carbon dioxide emission technology based on an offshore floating structure.


Main concepts

Energy resource: ocean thermal energy (OTEC) Negative emission technology: microalgae cultivation and artificial upwelling Economic activity: offshore aquaculture


Assessment

Carbon footprint calculation to examine the system capacity An integrated index estimation to evaluate the sustainability performance

Conceptual System Design

System Components

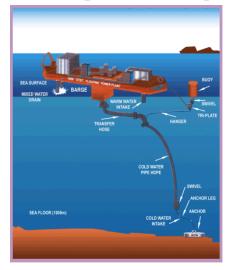
OTEC

		SST	Generation	Consumption	Output
Platform Ocean Surface	+	°C	kW	kW	kŴ
1 🖡 Preser	Cable	19-20	9250	5200	405
	1	20-21	10650	5200	545
	ISER	21-22	12000	5200	680
25°C (77°F)		22-23	13350	5200	815
PUMP		23-24	14600	5200	940
Heat Exchanger EVAPORATOR		24-25	15800	5200	1060
		25-26	16950	5200	1175
Seperate Weren Weter Discharge 23°C (73°F) 7.5°C (46°F)		26-27	18000	5200	1280
	11	27-28	19000	5200	1380
OR Combined Discharge 16°C (61°F)		28-29	20000	5200	1480
		29-30	20850	5200	1565
		30-31	21200	5200	1600
Figure 1. Schematic of an offshore colored - c	erletake 41°F)				

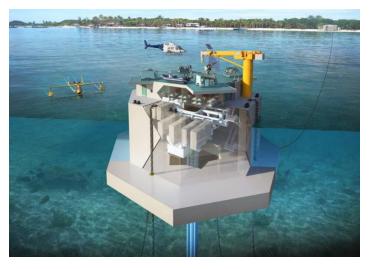
Sources: NOAA

Outputs of a 10MW OTEC (Deep sea water temperature 5.5°C)

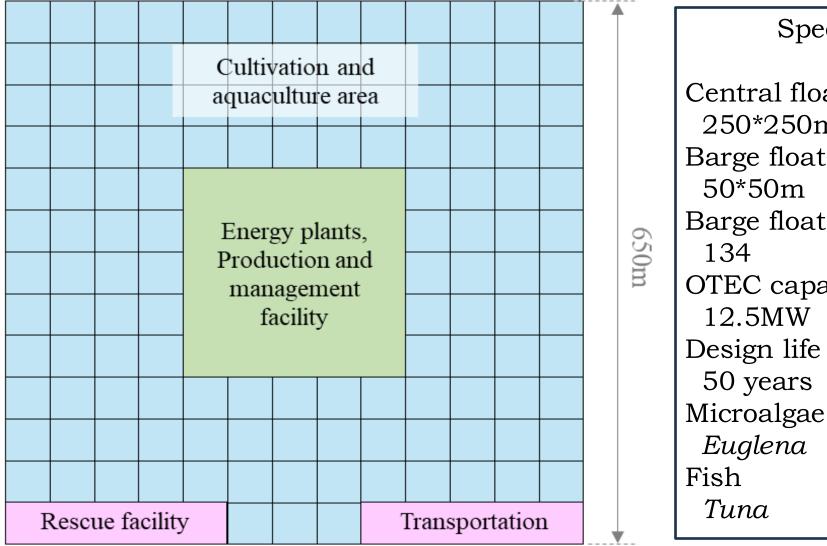
Sources: Report on power generation demonstration toward advanced utilization of deep sea water (2015)


OTEC

Experimental plant in Hawaii, USA


Demonstration plant in Kumejima, Japan

Demonstration plant in Tamil Nadu, India



Preliminary design by Lockheed Martin

Preliminary design by KRISO

Standardized Specific

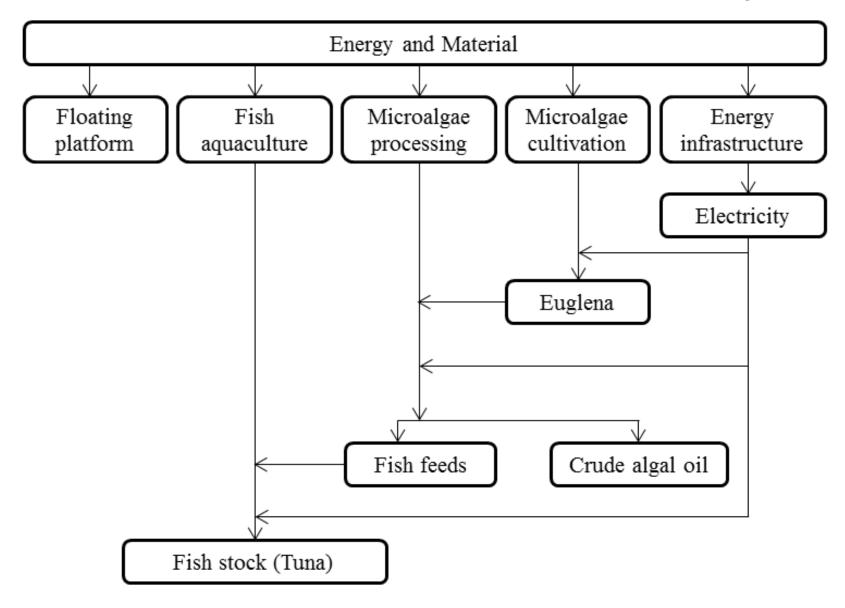
Specific

Central float size 250*250m Barge float size Barge float number **OTEC** capacity Design life time Microalgae

Assessment Methods

To evaluate the mitigation capability.

Life cycle carbon footprint


To evaluate the system sustainability

$$III_{light} = (EF - BC) + \gamma (C - B)$$

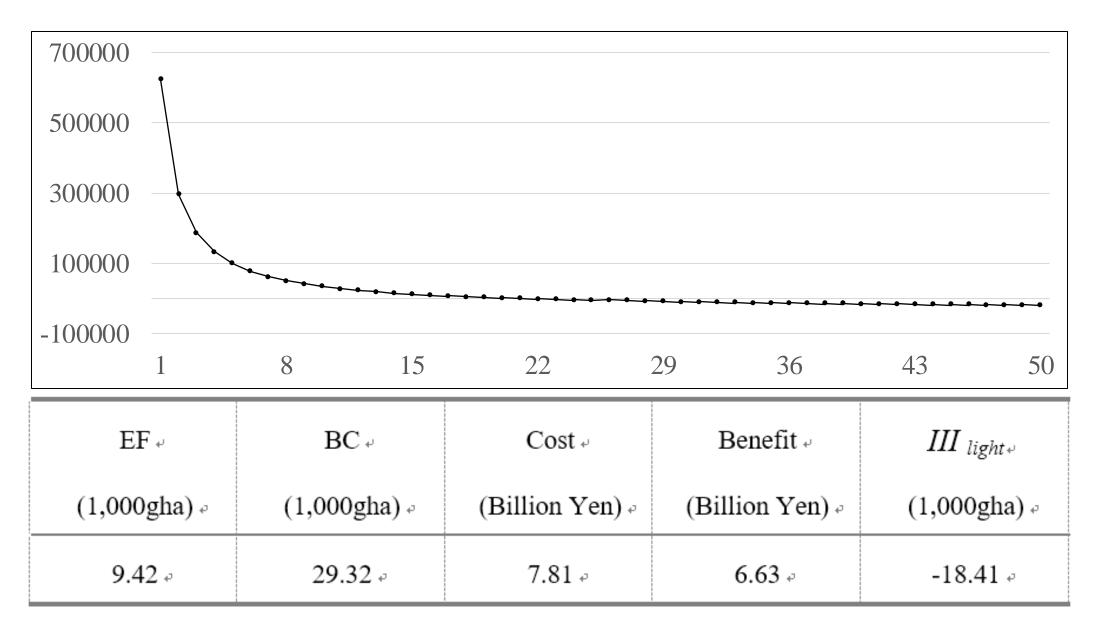
EF: *Ecological Footprint BC*: *Bio-capacity C*: *Cost B*: *Benefit* γ : ration of *EF* to GDP

	Cost	Benefit
Environment	Material production Operation	Replace the traditional production Replace the fossil fuel Ocean fertilization effect
Economy	Life time input	Revenue of fish stock and fuels

Carbon Footprint Boundary

Case Studies

Case 1: feasibility study in the South China Sea


Case 2: application potential analysis in east and southeast Asia

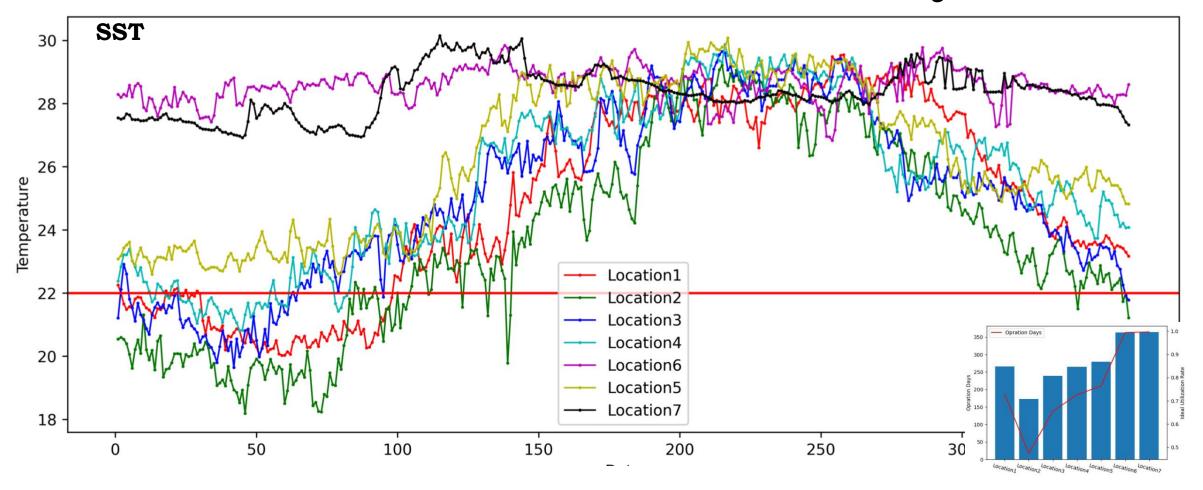
Case 3: application possibility in sub-tropic offshore area

Case 1: production and carbon footprint

	N"0, IS-91	16°51'0''N	Operation peri	od		265 days
	16°50'0'N 16	N.0.05-91	Algal oil produ	uction		1,963t
	16°49'0"N 15	ISLAND 9I N.0,66-91	Tuna production	on		2,400t
	1:25	^{5,000} № 500 № 19'30″E 112°20'30″E 112°21'30″E	Total CO2 emissions	Total CC avoidanc and remov	ce	Annual CO2 reduction
Fig.2.5 The geographical loc	ation of '	Woody Island	1,801,256t	2,629,20	Ot	16,500t

Case 1: system sustainability performance

Case 2: production and carbon footprint


		1	2	3	4	5	6	7
	Operation period (days)	226	173	239	265	279	363	364
	Algal oil production (ton)	1870	1495	1886	1823	2070	3052	3061
PAR PAR	Tuna production (ton)	2287	1828	2306	2229	2531	3732	3742

Application -	1 💩	2 ~	3 @	4 @	5 +	6 ₽	7 .
CO2 emissions (tons) ₊	1,772,249 -	1,655,765 ₽	1,777,255 -	1,758,059 ₽	1,834,443 -	, ,	2,140,999 -
CO2 avoidance and removal (tons) -	2,421,843 -	1,911,537 .	2,477,136 -	2,501,110 -	2,771,166 -	, ,	, ,
Annual CO2 reduction (tons) -	12,992 +	5,115 +	13,998 .	14,861 -	18,734 -	35,908 +	36,073 .

Case 2: system sustainability performance

Application -	1 🕫	2 🕫	3 🕫	4 @	5 🕫	6 💩	7 💩
EF (1,000gha) -	9.27 .	8.66 -	9.29 +	9.19 .	9.59 -	11.18 -	11.20 +
BC (1,000gha) •	25.87 .	20.08 ~	26.95 .	28.70 +	30.88 -	41.77 .	41.88 .
Cost (Billion Yen) -	7.76 -	7.54 .	7.77 .	7.73 .	7.88 -	8.45 ~	8.46 .
Benefit (Billion Yen)	6.31 -	5.05 -	6.37 .	6.15 +	6.99 .	10.30 -	10.33 +
III _{light} (1,000gha) «	-14.63 @	-7.52 +	-15.77 @	-17.29 💩	-20.35 @	-34.71 ~	-34.86 @
Sustainable year	24 th _*	33 ^{rd,₀}	23 ^{rd,2}	22 ^{nd,}	20^{th}	$14^{\mathrm{th}\wp}$	$14^{\mathrm{th},\circ}$

Case 2: influence factor analysis

Operation rate in sub-topic areas is relative lower than tropic area, thereby the production decrease causes the poorer sustainability performance.

Case 3: carbon footprint

	2
E CAP	
	P train

Option 1	To combine a wind power generation system with a capacity of 11.2MW
Option 2	To scale up the OTEC capacity to 23MW

ę	CO2 emissions (tons) 🖓	CO2 avoidance and removal (tons) -	Annual CO2 reduction (tons) -		
Option 1 .	1,646,705 ~	3,839,000 +2	43,846 *		
Option 2 🛛	1,631,532 -	4,883,800 ~	97,676 ~		

Case 3: system sustainability performance

Application .	Option 1 💩	Option 2 .
EF (1,000gha) -	8.70 .	8.64
BC (1,000gha) -	26.10 +2	37.45
Cost (Billion Yen) 🛛	8.53 +	8.73 💩
Benefit (Billion Yen) -	10.46 +	11.19 +
III _{light} (1,000gha) ₀	-19.84 .	-31.91 +
Sustainable year 🛛	19 th ₄ ,	15 ^{th.}

Sensitivity Analysis

Effect of ocean fertilization Modified estimations by reducing the effect for several cases

				0
CA 15) ·	à	P	0

Option 1	To combine a wind power generation system with a capacity of 11.2MW
Option 2	To scale up the OTEC capacity to 23MW

Ş	CO2 emissions	CO2 avoidance and removal	Annual CO2 reduction	Annual economic benefit
	(tons) +	(tons) +>	(tons) 🗸	(Billion Yen) 🕫
No. 6 in Section 3.2 -	2,138,394 .	2,791,394 .	13,060 +3	1.85 +
No. 7 in Section 3.2 ₊	2,140,999 .	2,799,084 .	13,162 +	1.87 .
Option 1 in Section 3.3 @	1,646,705 🛛	2,706,050 .	21,187 .	1.93 +
Option 2 in Section 3.3 +	1,631,532 +	2,799,200 .	23,353 +	2.46 .

Summary

> A conceptual system integrated ocean energy utilization, micro algae cultivation, marine aquaculture, and biological productivity enhancement based on an offshore floating platform was designed for the purpose of realizing negative CO2 emissions.

> The efficacy of removing CO2 was estimated by life time carbon footprint, and the sustainability of the system itself was evaluated by introducing the inclusive index III_{light} , which is calculated based on ecological footprint, bio-capacity, cost and benefit.

> The assessment results of case studies suggested the system could be self sustained and beneficial to climate change mitigation in large ocean area.

> Further examinations, especially from the viewpoints of the floating structure and marine aquaculture, are essential to realize the concept.

Thank You Very Much For Your Attention!

fengjun.duan@canon-igs.org