Dissolved Organic Carbon cycle in the Yellow Sea and the East China Sea : Insights from radiocarbon analysis

Yeongjin Ryu¹, Heejun Han², Taehee Na¹, Guebuem Kim¹, and Jeomshik Hwang¹

Seoul National University, Republic of Korea Korea Institute of Ocean Science and Technology (KIOST), Republic of Korea

ryj7763@snu.ac.kr

DOC cycle in the continental shelves

DOC: operationally defined by filtration (0.2 or 0.7 μ m)

Global DOC flux

Source	Flux (Pg C yr ⁻¹ = 10 ¹⁵ g C yr ⁻¹)	References	
Marine Primary production	15–25	Biddanda & Benner (1997); Ducklow et al. (1995)	
River	0.2-0.4	Bauer et al. (2013)	
Precipitation	0.1-0.4	Willey et al. (2000)	
Benthic diffusion	0.35	Burdige & Komada (2014)	
Groundwater	< 0.01	McDonough et al. (2022)	

Complex OC cycle in coastal ocean

- Terrestrial input & dynamic physical processes
 - -> complex DOC cycle in the coast
- Most of organic carbon exported from coastal ocean to open ocean in the form of DOC

Bauer et al. (2013)

Radiocarbon (¹⁴C) as a (DOC) tracer

Previous studies using ¹⁴C in the YS and ECS

Studies using ¹⁴C

Source	Region	References	
Riverine OC	Yellow River	Wang et al. (2012, 2016)	
	Korea rivers	Lee et al. (2021)	
Suspended POC	YS & ECS	Seo et al. (2022)	
Aerosol POC	Bohai Sea Chinese coast	Ren et al. (2022) Yu et al. (2018)	
Precipitation (DOC)	Seoul (Korea)	Yan & Kim (2018)	
Sedimentary POC	YS & ECS	Bao et al. (2016)	
Pore-water DOC	YS & ECS	Fu et al. (2022)	
Marine DOC	YS & ECS	Han et al. (2022)	

DOC Δ^{14} C in the ECS (Han et al., 2022)

Various types of OC in the East China Shelf can

contribute to **DOC pool**

Previous studies using ¹⁴C in the YS and ECS

Studies using ¹⁴C

Source	Region	References	
Riverine OC	Yellow River Yangtze River	Wang et al. (2012, 2016)	
	Korea rivers	Lee et al. (2021)	
Suspended POC	YS & ECS	Seo et al. (2022)	
Aerosol POC	Bohai Sea Chinese coast	Ren et al. (2022) Yu et al. (2018)	
Precipitation (DOC)	Seoul (Korea)	Yan & Kim (2018)	
Sedimentary POC	YS & ECS	Bao et al. (2016)	
Pore-water DOC	YS & ECS	Fu et al. (2022)	
Marine DOC	Ys & ECS	Han et al. (2022)	

DOC Δ^{14} C in the ECS (Han et al., 2022)

Various types of OC in the East China Shelf can

contribute to **DOC pool**

Sample collection

CTD casting & sampling site

Sampling

Filtration (GF/F filter, 0.7 µm) ~800 mL of seawater Sample storage (frozen at –20°C)

Sample analysis

Radiocarbon

UV oxidation method (Beaupre et al., 2007): UV for 6 hours to **oxidize DOC to CO**₂

DOC concentration ([DOC])

High temperature catalytic oxidation method

 $\sigma = \pm 2\%$

¹⁴C analysis at:

National Ocean Sciences AMS at WHOI Keck Carbon Cycle AMS in UC Irvine

Analytical uncertainty

DOC ∆¹⁴C (‰): ±8‰

TOC analyzer

Hydrography

* Water mass categorization (Chen, 2009):

Changjiang Diluted Water (CDW)

Yellow Sea Water (YSCW & YSWW)

Tsushima Warm Water (TWW): Kuroshio-originated

Lie & Cho (2016)

Summer (May – Oct) Winter (Nov – Apr)

CHINA

KOREA

Distribution of [DOC] and $\Delta^{14}C$

Summer (Aug 2020)

Surface > Bottom

- Stratification
- -> accumulation at the surface & degradation with depth

Autumn (Nov 2021)

Similar trend with summer, but with narrow ranged - Lower productivity in late autumn than summer

Winter (Feb 2022)

Small variation of [DOC] with depth - Vertical mixing due to strong monsoon

Distribution of [DOC] and $\Delta^{14}C$

Summer (Aug 2020)

Surface > Bottom

- Stratification
- → accumulation at the surface & degradation with depth

Autumn (Nov 2021)

Similar trend with summer, but with narrow ranged - Lower productivity in late autumn than summer

Winter (Feb 2022)

Small variation of [DOC] with depth - Vertical mixing due to strong monsoon

Distribution of [DOC] and $\Delta^{14}C$

- * High [DOC], but low Δ^{14} C (red circles)
- Addition of ¹⁴C-depleted DOC

 * mobilization of aged POC to DOC (sedimentary or atmospheric aged OC)

Sedimentary POC Δ^{14} C = -305 \pm 102‰

(Bao et al., 2016)

Aerosol POC Δ^{14} C = -304 to -640 ‰

in winter

(Ren et al., 2022)

DOC distribution with salinity

(3) Conservative behavior of [DOC] along CDW–TWW in the ECS, but higher Δ^{14} C

- Removal of aged DOC & addition of fresh DOC during mixing

DOC distribution with salinity

(4) Significant seasonal variation of Δ^{14} C (~80‰) in TWW-DOC

- Degradation (production) of fresh DOC (aged DOC) in summer, or vice versa in winter

Major source of DOC in the YS & ECS: Keeling plot approach

Major source of DOC in the YS & ECS: Keeling plot approach

$$Two-component mixing model$$

$$y = slope^*x + y\text{-intercept}$$

$$\Delta^{14}C_{tot}$$

$$= ([DOC]_{bg}\Delta^{14}C_{bg} - [DOC]_{bg}\Delta^{14}C_{xs})\left(\frac{1}{[DOC]_{tot}}\right) + \Delta^{14}C_{xs}$$
(tot: total, bg: background, xs: excess)

Date	R ²	y-intercept (‰)	DIC Δ ¹⁴ C (‰)
Aug 2020	0.89	+49±18	
Nov 2021	0.46	+27±49	-8 to +12
Feb 2017	0.36	-13±42	(n = 3)
All	0.74	30±16	

* Marine PP: same Δ^{14} C to DIC (-8 to 12‰) pore-water DOC Δ^{14} C: -66 to -12‰ (Fu et al., 2022)

Fresh ($\Delta^{14}C > 0$ %) DOC (PP & pore-water DOC) dominate the DOC input in the YS & ECS

Summary

- Mixing among water masses is an important control of DOC cycle in the YS and ECS.
- Marine primary production is the dominant source of DOC.
- DOC supplied from sediment is another source of DOC in bottom layer.
- Using [DOC] and Δ¹⁴C together provides information on various sources of DOC.