

Recent advances in macroplastic risk assessments

Erin Murphy^{1,2}, Britta Baechler¹, Lauren Roman³, Nicholas Mallos¹, George H. Leonard¹, Robson G. Santos⁴, and Chelsea M. Rochman²

¹Ocean Conservancy, ²University of Toronto, ³University of Tasmania, ⁴Universidade Federal de Alagoas

10/30/2024

Background

- Plastic interactions in 1300 marine species
- Linked to lethal and sublethal effects
- Unknown risk to animal and population health

Motivation

Motivation: Develop a suite of monitoring and management tools for macroplastic to track the problem, identify risk thresholds, and inform guidelines, goals, and regulations.

Risk assessments

- Process to identify potential hazards
- Applications:
 - Human health, animal health, ecosystem health
- Types:
 - Quantitative, qualitative, semiquantitative, scenario-based

Previous Research

Relative vulnerability indices

A multi-taxonomic, trait-based framework for assessing macroplastic vulnerability

Brude's Whale (B. edeni)	High	70 /
North Desifie Dight Whole (F		70
North Pacific Right Whale (E.		
japonica)		70.7
Sei Whale (B. borealis)		71.7
Fin Whale (B. physalus)		72.3
Hawaiian Monk Seal (<i>N.</i>		
Schauinslandi)		72.6
Blue Whale (B. musculus)		73
Green Turtle (C. mydas)		74.7
Hawaiian Petrel (P. sandwichensis)		75
Loggerhead (C. caretta)		76.1
Hawksbill (E. imbricata)		77.4
Leatherback (D. coriacea)		81.4
Short-tailed Albatross (P. albatrus)		82.9

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i

Erin L. Murphy ^{a,b,c,*}, Leah R. Gerber ^{a,b}, Chelsea M. Rochman ^c, Beth Polidoro ^{a,b,d}

Ongoing Research

Our objective: impact modeling

 Quantify likelihood of mortality based on gastrointestinal load

Our Approach

Literature Review

Approach

- Literature review (1900 to 2023)
 - Search terms: plastic debris, marine debris, macroplastic, mesoplastic, OR fisheries debris AND ingestion
- Check against other reviews
 - GLOVE database & Zhu et al. in prep

Inclusion Criteria

- Sea turtles, marine mammals, seabirds
- Macroplastics (>5 mm)
- Cause of mortality reported
- Individual data on ingestion

Data Collection (Reporting Methods)

Organismal Data

- Family
- Species
- Age
- Sex
- Location
- Cause of death

Plastic Data

- Type: Hard, soft, rubber, fishing debris, cloth, foam, other
- Pieces by type (all >5mm)
- Volume by type
 - Estimate volume
- Plastic causing death

Necropsy data

95% Probability of death: Volume consumed

Mortality model	95% threshold (#)	95% threshold (size)
Birds		
Total plastic	16 pieces	2 cm ³
Hard plastic	23 pieces	1 cm ³
Rubber	7 pieces	2 cm ³
Mammals		
Total plastic	102 pieces	11,981 cm³
Soft plastic	9 pieces	730 cm³
Fishing Debris	202 pieces	652 cm ³
Adult turtles		
Total plastic	396 pieces	373 cm³
Hard plastic	305 pieces	71 cm ³
Soft plastic	472 pieces	266 cm ³
Fishing debris	401 pieces	1181 cm ³
Young Turtles (<35cm)	
Total plastic	176 pieces	25 cm ³

Macroplastics pose mortality risk to marine wildlife. Risk varies by plastic type and taxon.

Policy Implications

- Monitoring: Identify baseline and track management progress
- Risk assessment: Inform science-based targets
- Management: Prioritize policy and management approaches

- Short term:
 - Publish risk assessment and framework
 - Publish biota monitoring methods
- Long term:
 - International science working group
 - Integrate exposure into risk assessment tool
 - Develop monitoring protocol for the environment and biota
 - Create risk management framework

