

The Alteration of Toxicity in Marine Organisms by Micro and Nanoplastics, Co-existing with Typical Organic Chemicals

Speaker: Prof./Dr. Ying WANG/王 莹 (<u>wangying@nmemc.org.cn</u>),

Organization: National Marine Environmental Monitoring Center (NMEMC),

Ministry of Ecology and Environment (MEE), China 生态环境部 国家海洋环境监测中心

Date: 30 October, 2014

Honolulu, USA

National Marine Environmental Monitoring Center (NMEMC) 国家海洋环境监测中心

Location of Dalian

Xinghaiwan bridge, Dalian, Liaoning 星海湾大桥,大连,辽宁

Honolulu, USA

PICES Meeting 2024

Oct 26-Nov 1, 2024 2

Honolulu, USA

PICES Meeting 2024

Oct 26-Nov 1, 2024

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

Honolulu, USA

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

国家海洋环境监测

Honolulu, USA

polar compound

Bisphenol A (BPA), a typical EDC

> non-polar compound

国家海洋环境监测

Benzo[a]pyrene (B[a]P), a typical five-ring PAH

- First, which compounds will govern the overall toxicity of the mixture at environmentally relevant concentrations?
- Second, how will the bioavailability and toxicity of each chemical be altered after their interaction?

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

➤ Case 1

Honolulu, USA

PICES Meeting 2024

Experimental Design

9

国家海洋环境监测中心

Adverse Effects on Medaka

国家海洋环境监测中心

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

PS-NPs: decreased embryonic heart rate, and embryonic survival and larval body length; larval deformities such as hemorrhaging and craniofacial abnormalities.

Yu et al., 2023, *Chemosphere*, 336: 139174.

Honolulu, USA

PICES Meeting 2024

Adverse Effects on Medaka

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

PS-NPs: Liver: early inflammatory responses (vacuolation, apoptosis and necrosis) Heart: a thinner myocardial wall, reduced myocardial fiber and irregularity in cardiac morphology

Yu et al., 2023, Chemosphere, 336: 139174.

Honolulu, USA

PICES Meeting 2024

The Interaction Between PS-NPs and BPA

The sorption of BPA onto the surface of PS-NPs is primarily driven by electrostatic and hydrophobic interactions.

Honolulu, USA

Effects of BPA on the Bioaccumulation of PS-NPs

The bioaccumulation of PS-NPs by medaka larvae was reduced in the presence of BPA.

Molecular Mechanism

国家海洋环境监测中心

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

The metabolic and immune pathways were impacted, with the Peroxisome Proliferator-Activated Receptor pathway playing a key role in hepatotoxicity and developmental toxicity.

Honolulu, USA

PICES Meeting 2024

Oct 26-Nov 1, 2024

Summary

- Single exposure to PS-NPs resulted in embryonic mortality, growth inhibition, developmental deformity and histopathological alterations in the liver.
- Co-exposure to PS-NPs and BPA mitigated all of these adverse impacts. This phenomenon may be due to the absorption of BPA by PS-NPs, which subsequently led to a decrease in the bioaccumulation of PS-NPs.
- Developmental toxicity in medaka following a single exposure to PS-NPs is primarily regulated by the PPAR pathway, which is involved in cholesterol metabolism and lipid synthesis.

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

Aquatic Toxicology 256 (2023) 106430

Contents lists available at ScienceDirect
Aquatic Toxicology
journal homepage: www.elsevier.com/locate/aqtox

Polystyrene microplastics alleviate adverse effects of benzo[a]pyrene on tissues and cells of the marine mussel, *Mytilus galloprovincialis*

Ying Wang ^{a, #, *}, Mingxing Zhang ^{a, #}, Guanghui Ding ^b, Huahong Shi ^c, Yi Cong ^a, Zhaochuan Li ^a, Juying Wang ^{a, *}

Honolulu, USA

Experimental Design

Dutch Wadden Sea 0.3-2.7 μm, 3.1 μg/L (Materic, et al., 2022)

Mytilus galloprovincialis

🔪 adults, for 96 h

Gills + Digestive glands

Liaodong Bay 0.07 µg/L (maximum) (Wang, et al., 2014)

国家海洋环境监测中心

Histopathology

thinning of filaments, mean epithelial thickness (MET) and circularity of digestive tubules

Oxidative stress

Lveles of SOD and GST in gills and digestive gland, ROS levels in haemolymph

Gene expression by qRT-PCR

stress response, immune, and detoxification Interaction of MPs and B[a]P

Accumulated microplastics and B[a]P in biota

B[a]P

B[a]P+PS-MPs

Honolulu, USA

PICES Meeting 2024

Oct 26-Nov 1, 2024

Adverse Effects on Tissues and Cells

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

- Thinning of gill filaments and a reduction in the mean epithelial thickness (MET) of digestive tubules following exposure to B[a]P alone and PS MPs alone.
- However, co-exposure to both substances alleviated these adverse effects.

Wang et al., 2023, *Aquatic Toxicology*, 106430: 256.

Honolulu, USA

PICES Meeting 2024

Adverse Effects on Tissues and Cells

Molecular mechanism: oxidative stress and qRT-PCR

- Single exposure to PS MPs or B[a]P resulted in increased ROS levels in haemolymph, whereas co-exposure alleviated these adverse effects.
- Mussels co-exposed to B[a]P and PS MPs exhibited significantly lower GST activity and down-regulated mRNA expression of NF-kB in gills compared to mussels exposed to B[a]P alone.

immune related

Wang et al., 2023, *Aquatic Toxicology*, 106430: 256.

Interaction between MPs and B[a]P

NATIONAL MARINE ENVIRONMENTAL MONITORING CENTER

Interaction between PS-MPs and B[a]P

The sorption of B[a]P onto the surface of MNPs is primarily driven by hydrophobic and $\pi - \pi$ interactions.

Honolulu, USA

Bioaccumulation of B[a]P

The waterborne concentrations of B[a]P

0.40 B[a]P concentration in soft ∎B[a]P ■B[a]P+PS MPs 0.32 (g/gµ) 0.24 tissue 0.16 6.7% 0.08 reduction 0.00 gills digestive total soft glands tissue

Bioaccumulation of B[a]P in mussels for 4 days

The bioaccumulation of B[a]P by mussels decreased in the presence of PS-MPs.

Summary

- The co-presence of PS MPs reduced the adverse effects caused by B[a]P to some extent. PS MPs decreased the waterborne concentration of B[a]P and its bioaccumulation in adult mussels.
- Single exposure to B[a]P induced toxic effects in mussels, including histopathological alterations, oxidative stress, and dysregulation of mRNA expression. Polystyrene microplastics mitigate the adverse effects of benzo[a]pyrene on the tissues and cells of the marine mussel, Mytilus galloprovincialis.

Acknowledgements

Ying WANG (<u>wangying@nmemc.org.cn</u>)

> Research Group

Marine Environmental Quality Criteria and Standard/海洋环境基准标准团队

> Funded Projects

- National Key Research and Development Program of China (2022YFC3105600)
- National Natural Science Foundation of China (No. 42276167)
- Liaoning Revitalization Talents Program, China (XLYC2007013)