MAY 30, 2024

Oregon officials warn about paralytic shellfish poisoning from mussels

Chris Chase published in Food Safety & Health

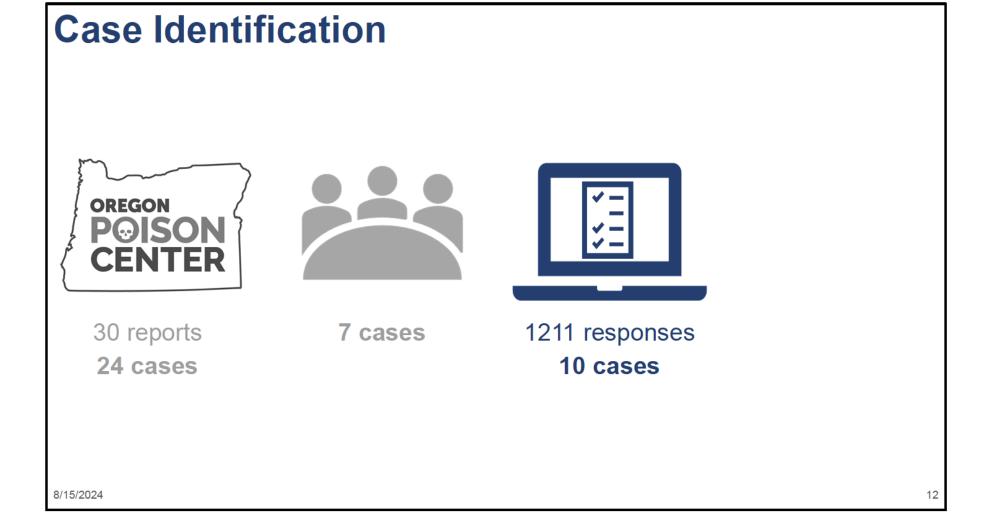
Vera L. Trainer University of Washington Olympic Natural Resources Center verat@uw.edu

7 things to know about the FDA's warning about shellfish from the Pacific Northwest

At least 20 are left violently ill after being poisoned by paralytic shellfish harvested over the weekend

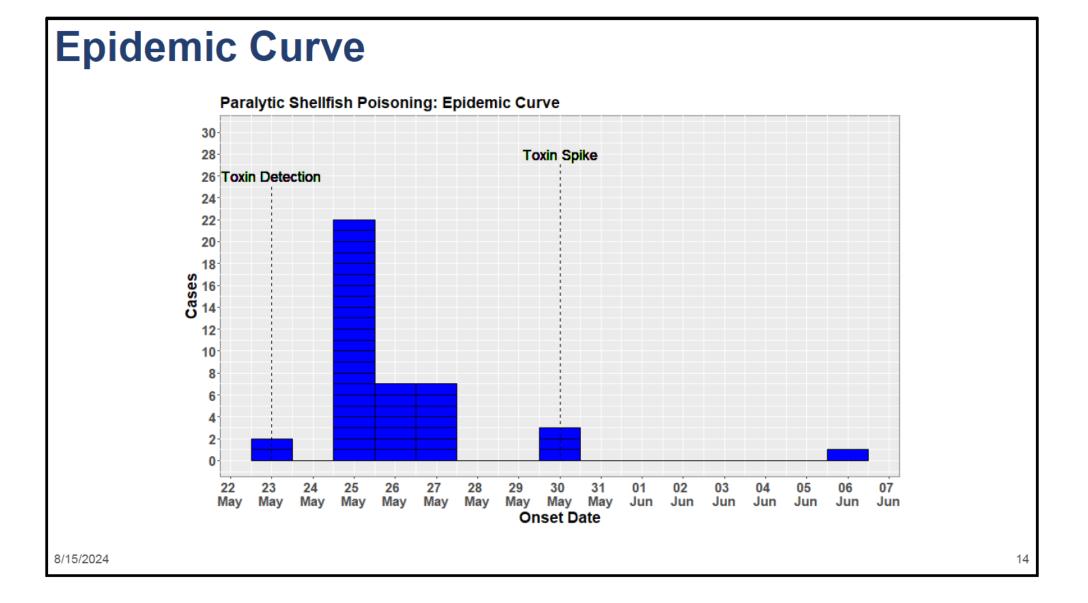
- Some of those afflicted with the potentially deadly illness were hospitalized
- So far, no one has died from the foodborne illness found in mussels in Oregon
- Symptoms include nausea, vomiting, diarrhea and sometimes, trouble breathing

Holiday weeke nd horror: Historic paralytic shellfish poisoning on the Oregon coast — May–June 2024

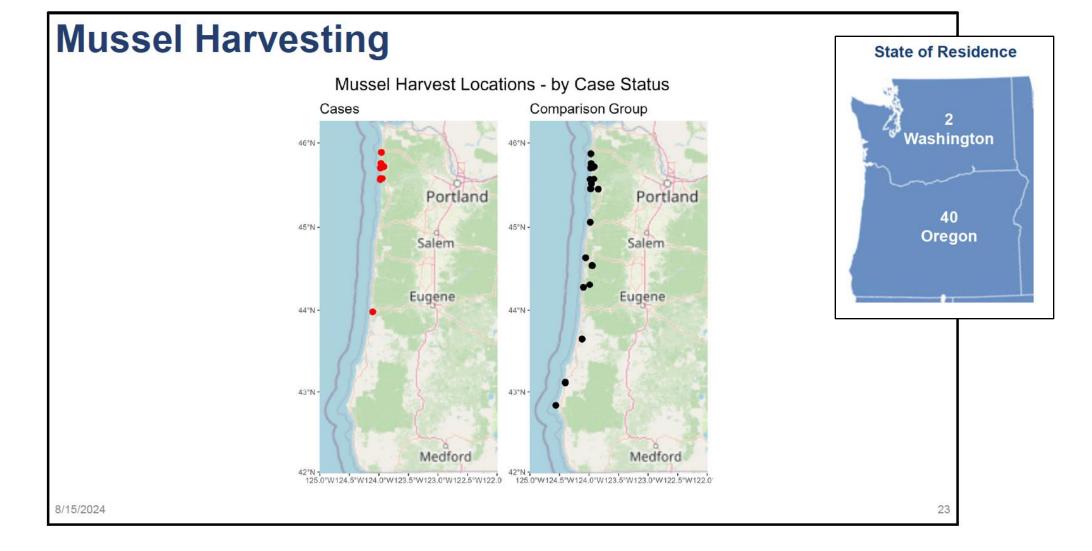

Madison Walton CDC Epidemic Intelligence Service Officer Assigned to Oregon Health Authority

Rosalie Trevejo and June Bancroft Oregon Health Authority Senior Epidemiologists

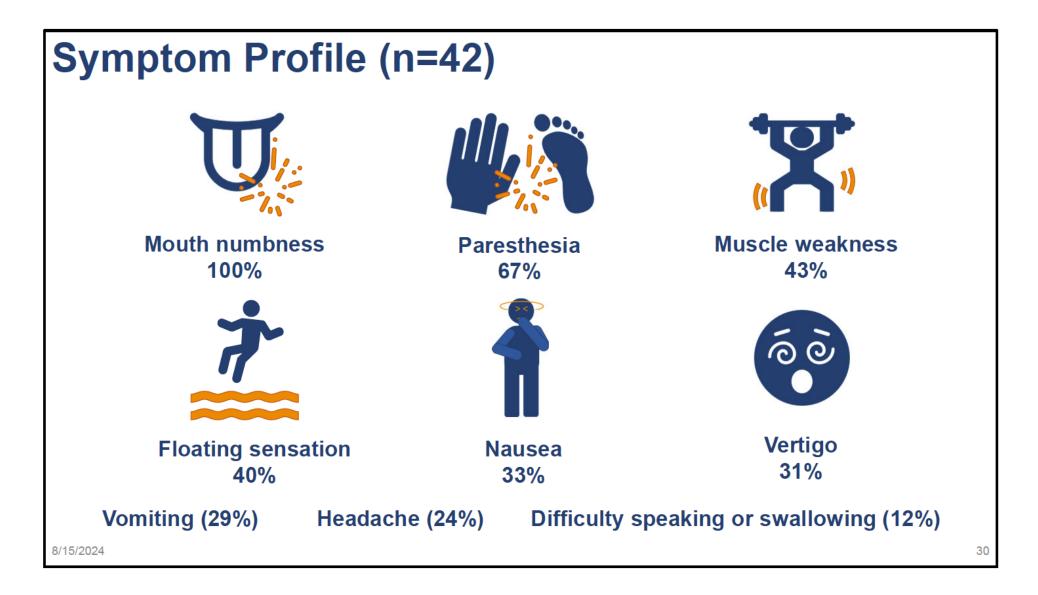
Terran Gilbreath CSTE Applied Epidemiology Fellow Assigned to Oregon Health Authority

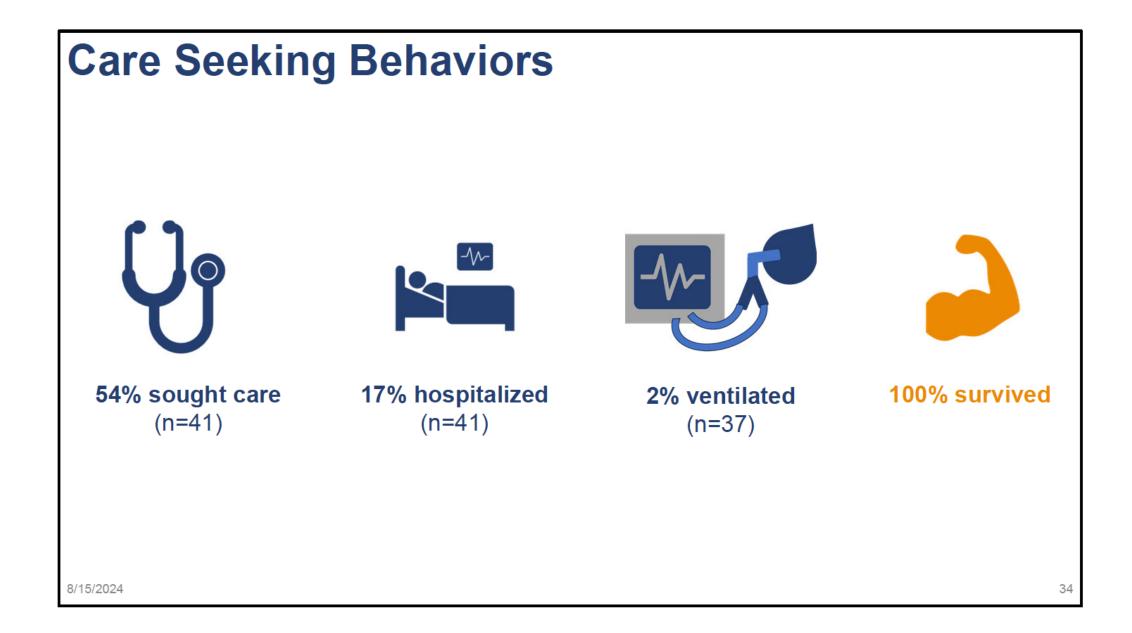

Case Definition

- Presumptive cases were defined as having consumed shellfish harvested from the Oregon coast during May 14–July 12, 2024, and
 - new onset paresthesia and/or numbress of the mouth within 5 hours of consumption.
- Confirmed cases also provided leftover shellfish that tested positive for paralytic shellfish toxin.

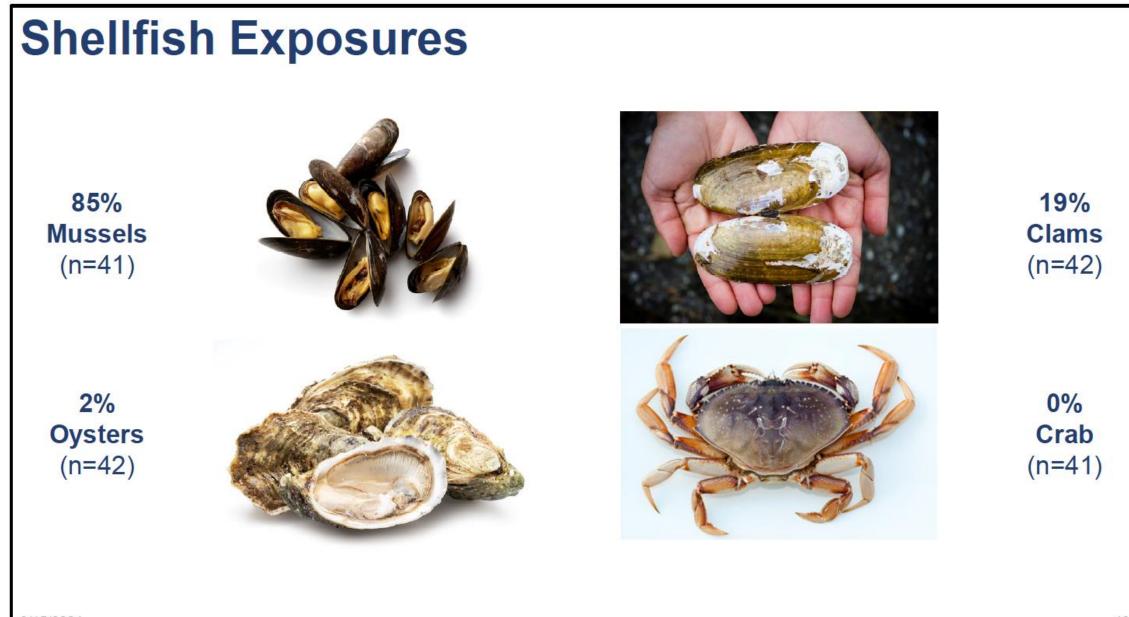


OHA fellows designed and implemented an online public survey which was distributed to all Oregon Department of Fish and Wildlife shellfish license holders and later shared more widely in an OHA press release. Of the 1,211 survey responses, 10 additional cases were identified that met the case definition.


Paralytic Shellfish Pois Focused Questionn	-
Oregon Health Authority Acute and Communica	able Disease Prevention Section
Script: Hello, my name is	and I am calling from Oregon Health Authority.
We are following up with people who have recently been sick wit	h paralytic shellfish poisoning after consuming
shellfish. This is a short survey, estimated to take about 20 minut	tes. Is now a good time to talk?
Contact Information	
1. Name	
2. Orpheus ID	
3. Address (Street, City, Zip code)	
4. County	
5. Phone number:	
Symptoms & Medical Care Questions	
6. Did you experience symptoms?	Y N U
a. Numbness in your mouth?	Y N U
b. Nausea?	DY DN DU
c. Vomiting?	
d. Headache?	Y N U
e. Muscle weakness?	Y N U
f. Tingling of your hands or feet?	Y N U
g. Vertigo (feeling like you or the room is spinning)?	Y N U
h. Lightheadedness or a floating sensation?	Y N U
i. Difficulty speaking (dysphonia)?	Y N U
j. Difficulty swallowing (dysphagia)?	Y N U
k. Respiratory arrest?	Y N U

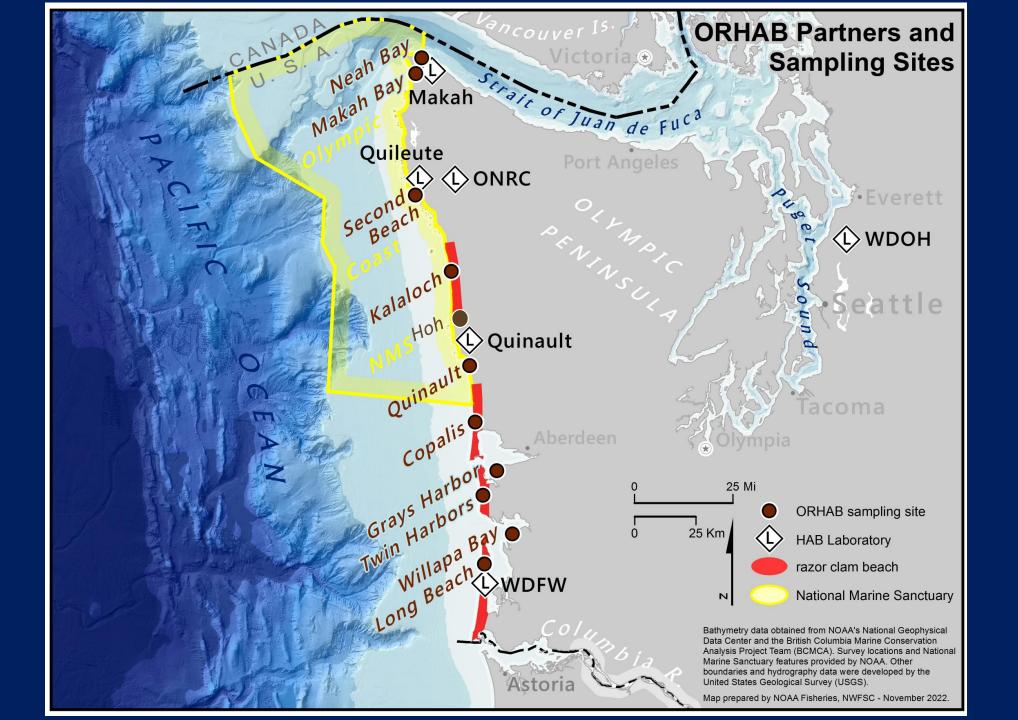

For context, May 25-27 was the Saturday–Monday of Memorial Day weekend: 86% of cases had illness onset dates in that three-day window over Memorial Day weekend.

Known mussel harvesting locations were reported for 30 cases and included 13 unique beaches as mussel and/or clam harvest sites. No beaches were reported for harvested oysters. Harvest beach sites spanned approximately 164 miles of Oregon's 363-mile coastline.

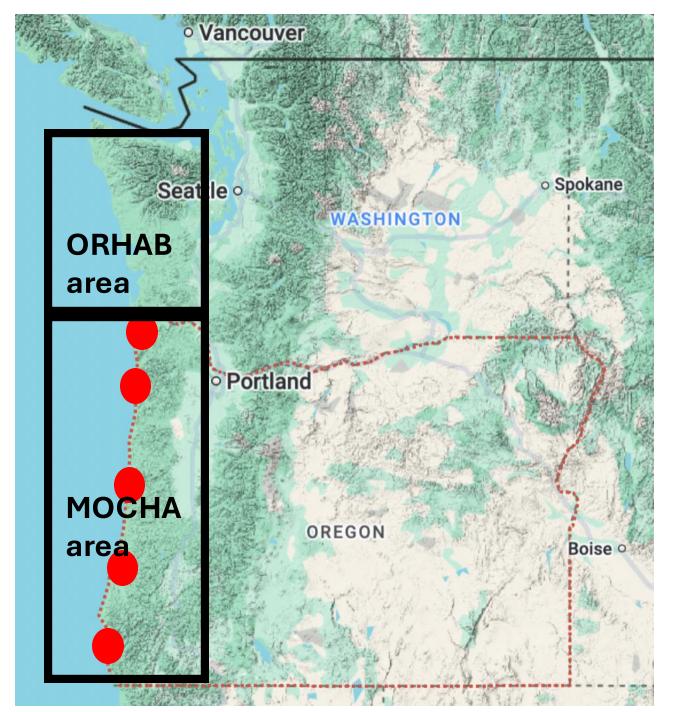


Other symptoms reported were vomiting, headache, and difficulty speaking or swallowing.

and no patients died as a result of this outbreak.


Uare-Seeking	J Benaviors
35.4 hours (range: 2–113, n=20)	52.2 hours (range: 21–76, n=17)
45.5 years (range: 11–76, n=22)	52.2 years (range: 17–76, n=17)
	(range: 2–113, n=20) 45.5 years

Saxitoxin concentrations were extremely elevated.

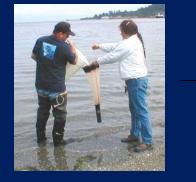

- Oregon Department of Agriculture limit to close beaches to harvesting
 - >80 µg/100 g of shellfish meats
- Mussels tested
 - 1,138 µg/100 g
 - 3,537 µg/100 g
 - 5,500 µg/100 g

Monitoring Oregon's Coast for Harmful Algae (MOCHA)

 Phytoplankton samples are collected weekly at the following sites: Clatsop beaches (3), Cannon Beach (1), South Beach (1), Bastendorff Beach (1) and Gold Beach (1).



HAB early warning system


Expensive, time consuming LAST MINUTE CLOSURES

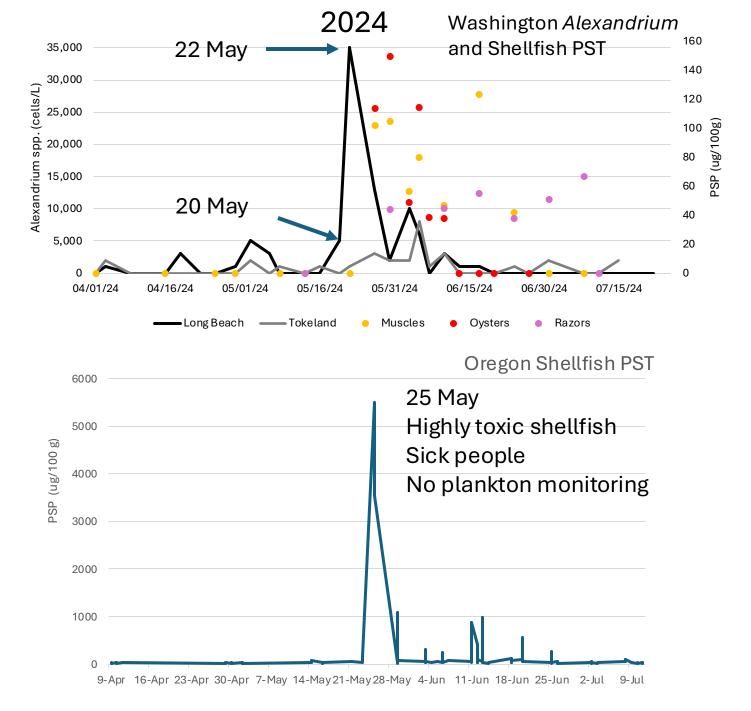
Cost & time effective MAY BE SAFER

1. Dig for clams

1. Collect plankton

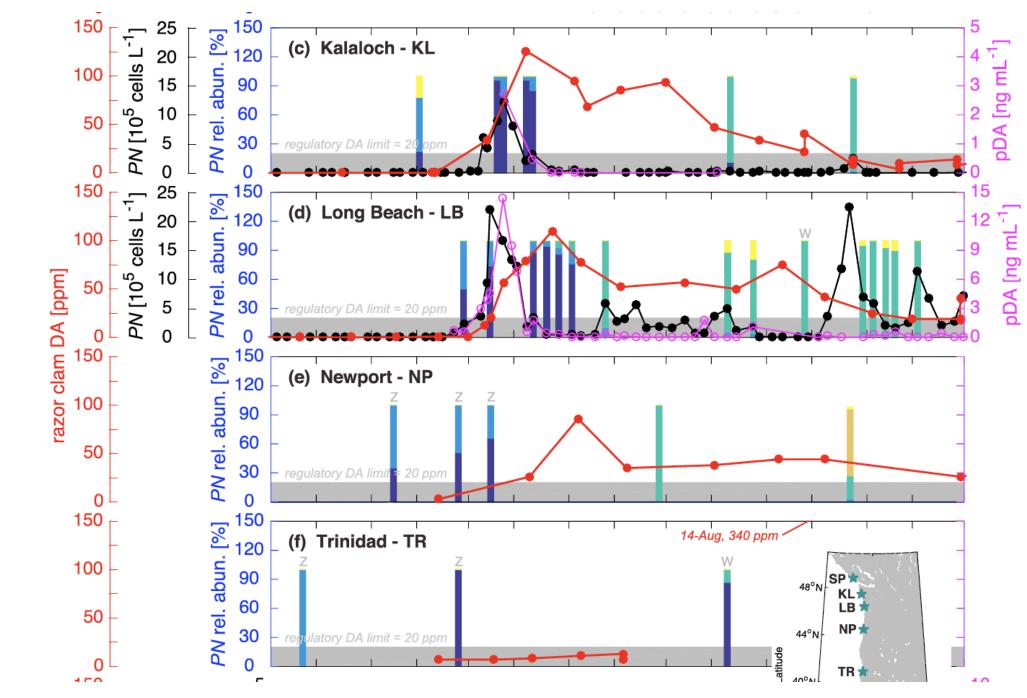
2. Look for toxic cells

2. Test clams at Dept. of Health (DOH)

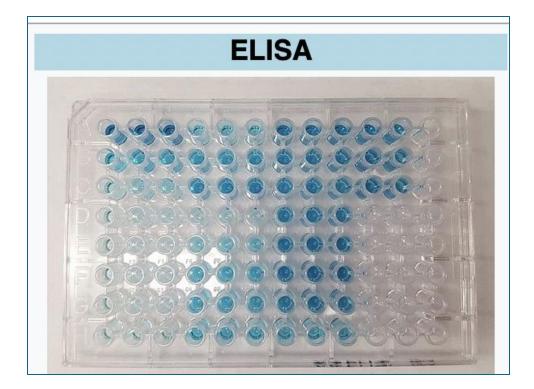


3. Test for toxin (seawater & clams)

4. Test clams at DOH

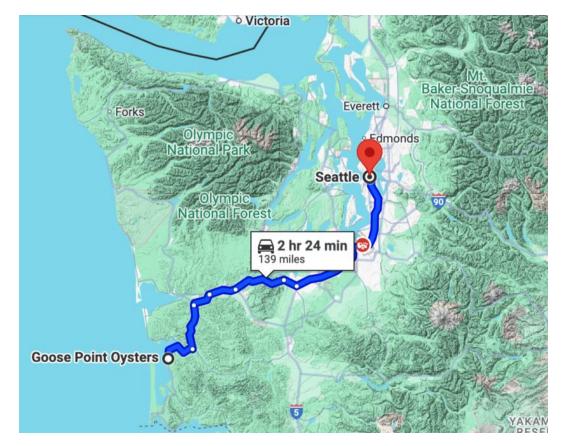


- At least 5 days early warning is possible with phytoplankton monitoring
- In 2024, no phytoplankton monitoring in OREGON from mid-May to mid-June


Early Warning

2015

Possible screening tests



Semi-quantitative

Quantitative

Possible uses of rapid test

Shellfish growers could save a trip to Seattle by screening their shellfish for toxins

Acknowledgements



Questions? Contact Vera Trainer verat@uw.edu

- NOAA NCCOS Emergency Response Funding
- ORHAB partners
- WDOH, ODFW for samples
- NANOOS for lab funding
- Oregon Health Authority

Paralytic Shellfish Posioning Rapid Test Results

Misty Peacock, Salish Sea Research Center, Northwest Indian College Megan Schulz, Kira Walters, Rosa Hunter, Anthony Odell, and Vera Trainer

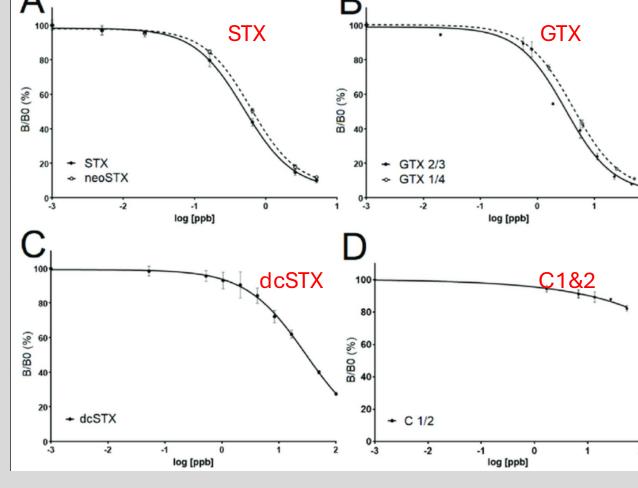
Paralytic shellfish toxins

Mouse bioassay – standard method

Enzyme Linked Immunosorbent Assay (ELISA)

Based on antibody detection of toxin

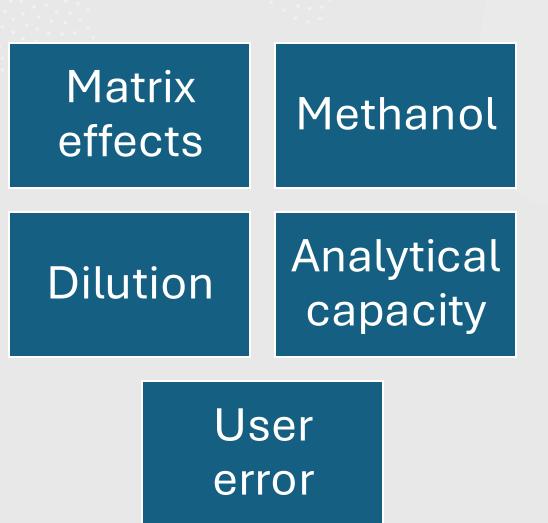
May not recognize all forms of saxitoxin equally well



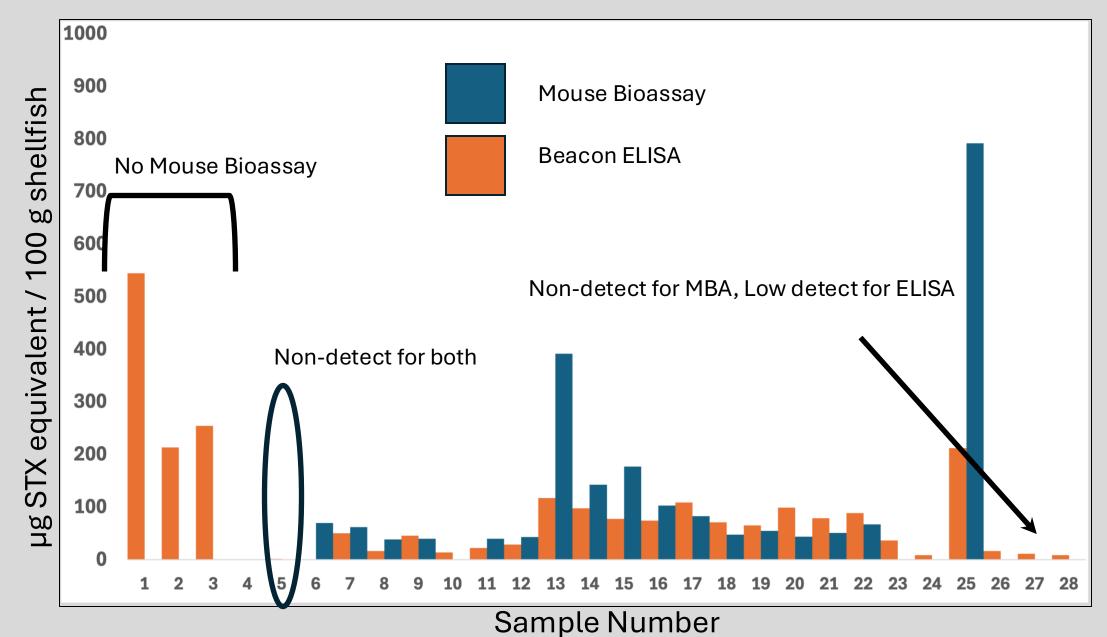
Therefore, screening tests need validation!

Saxitoxin structure and cross-reactivity

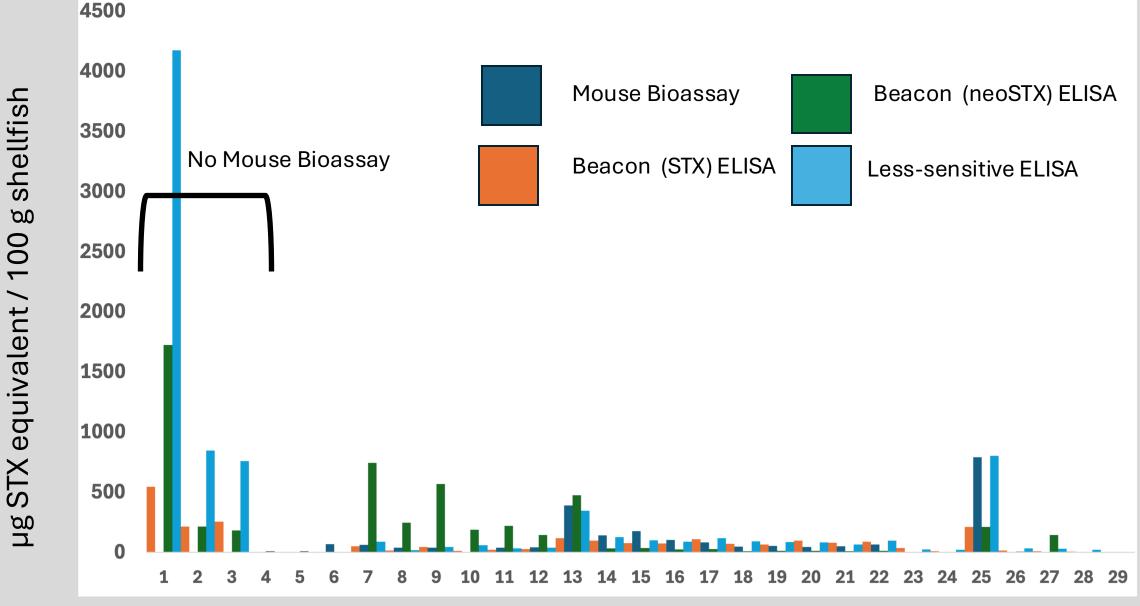
Performance Data					Λ				D
Test reproducibility:	Coefficients of variati	on (CVs) fo	r standards: <10%, CVs for sample	es: <15%	A	1			D
Selectivity:	This ELISA recognize	es Saxitoxin	and other PSP toxins to varying d	egrees:	100	÷	S	ТХ	100
Cross-reactivities:	Saxitoxin (STX)	100% (per	definition)				P.		80
	Decarbamoyl STX	29%			80		<i>\</i>		00
	GTX 2 & 3	23%			(%) 60		/:		(% 60
	GTX-5B	23%			08/8		```	19	60 (%) 08/8
	Lyngbyatoxin	13%			6 40	1		1.	40
	Sulfo GTX 1 & 2	2.0%						Ni.	
	Decarbamoyl GTX 2	& 3	1.4%		20	+ STX → neoSTX		14:00	20
	Neosaxitoxin	1.3%				- HOOTX			
	Decarbamoyl Neo ST	X	0.6%		ľ.	-3 -2	-1 log [ppb]	0	1 .
	GTX 1 & 4 < 0.2%				0		log [bbo]		
Cross-reactivities with	h other classes of alga	I toxins hav	e not been observed.		C	I			D
					100			VT206	10
							· 1	dcSTX	10



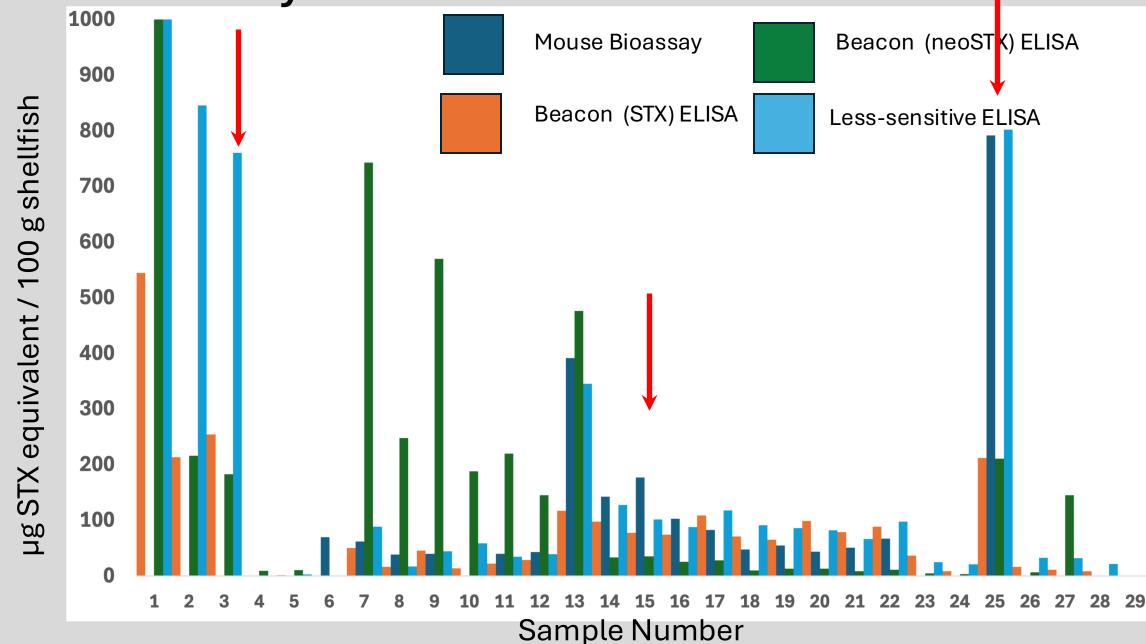
McCall et al. 2019



Issues with antibody-based tests



Mouse Bioassay and Beacon ELISA



Mouse Bioassay and Beacon ELISA

Sample Number

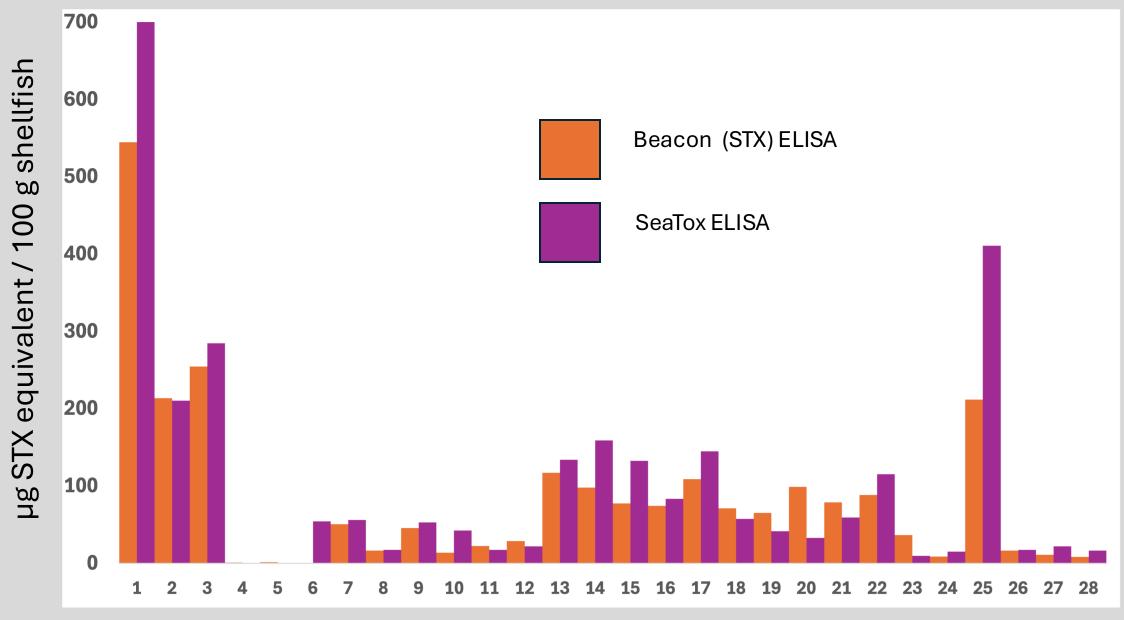
Mouse Bioassay and Beacon ELISA

Bigelow lab analysis (HPLC)

		Sample 3	Sample 15	Sample 25
Total Toxicity (µgSTXdiHCleq/100g)		2035.7	105.9	392.0
	GTX4	7.5	15.9	27.1
	GTX1	16.9	17.6	44.5
	dcGTX3	1.0	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
	GTX5	0.8	2.0	2.5
	dcGTX2	0.6	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Individual Taxisitias (usSTVdiUClas /100s)	GTX3	11.6	18.0	31.0
Individual Toxicities (µgSTXdiHCleq/100g)	GTX2	5.0	13.8	11.6
	NEO	1521.3	17.0	158.3
	dcSTX	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
	STX	419.1	21.7	108.3
	C1	2.3	<lod< th=""><th>1.2</th></lod<>	1.2
	C2	49.5	<lod< th=""><th>7.5</th></lod<>	7.5

SeaTox kit background

Article


Improved Accuracy of Saxitoxin Measurement Using an Optimized Enzyme-Linked Immunosorbent Assay

Jennifer R. McCall ^{1,*}, W. Christopher Holland ², Devon M. Keeler ³, D. Ransom Hardison ² and R. Wayne Litaker ^{4,†}

SeaTox and Beacon ELISA


5000

4500				PSI	P Co	nger	ner		EC	₅₀ (in	ppb)	Se	eaTox	Cros	s-Re	eacti	vity		Ab	raxis	s Cro	ss-R	eacti	vity			
					ST	Х			0.4	89 ± (0.031	-			100)%						10	0%				-	
4000					neoS	STX			0.6	08 ± 0	0.032	2			80.4	4%						1.	3%					
					GTX	1/4			3.6	94 ± (0.352	2			13.2	2%						0.2	2%					
2500					GTX	2/3			3.3	09 ± 1	1.144	Ł			14.8	8%						23	3%					
3500					dcS	ΤХ			49.	15 ± 4	43.58	3			9.9	%						29	9%				-	
3000																												
2500													Bea	con	(ST)	() E	LIS	A										
2000															(01)	., –												
1500													Sea	Tox E	LIS	Ą												
1000												1																
1000																												
500																												
000			_	I																								
0						_																						
0		-	~	-	-		-	-	~	4.0		40	4.0		4.5	4.0	4.7	4.0	4.0	00	0.1	00	00		0.5	00	~=	-
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
												S	am	ple	Νī	ım	he	r										

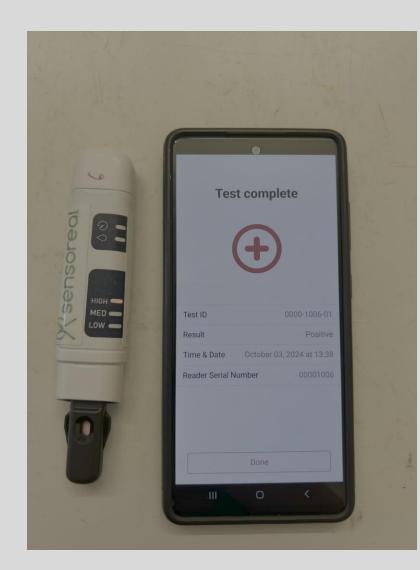
Sample Number

Saxitoxin structure and cross-reactivity

Future Directions:

Liquid Chromatography Mass Spectrometry

JOURNAL ARTICLE


Ultrahigh-Performance Hydrophilic Interaction Liquid Chromatography with Tandem Mass Spectrometry Method for the Determination of Paralytic Shellfish Toxins and Tetrodotoxin in Mussels, Oysters, Clams, Cockles, and Scallops: Collaborative Study 3

Andrew D Turner ➡, Monika Dhanji-Rapkova, Sum Y T Fong, James Hungerford, Paul S McNabb, Michael J Boundy, D Tim Harwood, Collaborators Author Notes

Journal of AOAC INTERNATIONAL, Volume 103, Issue 2, March-April 2020, Pages 533–562, https://doi.org/10.5740/jaoacint.19-0240

Published: 20 April 2020 Article history v

Sensoreal PSP Alert

PSP ALERT Your shield against shellfish toxins.

Sensitivity, specificity and reliability

PSP Alert has undergone extensive testing across three different species of shellfish, demonstrating a sensitivity of 100%. The tests revealed a false negative rate of 0% and a false positive rate of 6.7%. Additionally, a specificity of 91% was observed.

Simple sample preparation

PSP Alert offers a simplified, instrument-free method for extracting PSP toxins, ensuring easy and efficient sample preparation for users.

Negligible cross-reactivity

PSP Alert is the pioneering kit in the industry capable of detecting 12 variants of PSP toxins, featuring a patent-pending internal conversion step.

Portable and user friendly

PSP Alert was developed with user convenience in mind, resulting in a compact design. The kit includes all necessary reagents and utensils, making it suitable for field use.

Repeatability

preparation.

🕜 Ruggedness

100% (Consistent results across 5 consecutive testing runs using naturally contaminated samples).

✓ Variety of species

Tested on butter clams, sea mussels and blue mussels.

100% (no change in test results with a 20%

variation in sample extraction time).

Benchmarked and validated by CFIA

(Rapid test results

PSP Alert has been benchmarked against HPLC-PCOX at the Canadian Food Inspection Agency (CFIA), the current gold standard for detecting shellfish toxins.

Data storage and management (optional) The digital reader features Bluetooth connectivity

Results available in 30 minutes after sample

The digital reader features Bluetooth connectivity, allowing it to store and transfer test results via a dedicated mobile app.

Semi-quantitative tests (optional)

PSP Alert also offers the option to display semi-quantitative results, an industry first. The results are:

- Low (PSP Toxin <35ug STX diHCl eq/100g)
- Medium (PSP Toxin = 35-80ug STX diHCl eq/100g)
- High (PSP Toxin> 80ug STX diHCl eq/100g)

sensoreal.com | sepehr@sensoreal.com

Sensoreal data

High Toxin (above the regulatory limit)

Negative Toxin (non-detect)

Approaching regulatory limit

Mouse Bioassay				NTD	NTD	70	62	39	40	NTD	40	43	392	143	177	103	83	48	55	44	51	67	NTD	NTD	792	NTD	NTC	NTD
Sensoreal	Pos-High	Pos-High	Pos-High	Neg- Low	Neg- Low	Neg-medium	Neg-low	Neg-low	Neg-low	Neg- low/medium	Neg-low	Neg-medium	Pos-High	Neg-medium	Neg-medium	Pos-High	Neg-medium	Neg-medium	Neg-low	Neg-low	Neg-medium	Neg-low	Neg-low	Neg-low	Pos-High	Neg-low	Neg-low	Neg-low
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

AquaBC test (previously Jellet Rapid Test)

The ART biotoxin detection system

Tests available for the detection of saxitoxins (Paralytic Shellfish Poison, PSP), domoic acid (Amnesic Shellfish Poison, ASP) and okadaic acid (Diarrhetic Shellfish Poison, DSP) Portable and rugged digital reader for accurate qualitative and semi-quantitative measurements and data management and reporting.

Toxin	Sample	Extraction method
PSP	Shellfish	AOAC (lab) Rapid (field)
	Phytoplankton	Rapid
ASP	Shellfish	Methanol (lab) Rapid (field)
	Phytoplancton	Rapid
DSP	Shellfish	AOAC (lab only)

A	15	a	B	gh To	^{oxin}	(ab 2 S	^{ove} t i	the e	regu SL	ulato	ory li S	imit) fr) OI			¦ h	egati ri S	ve T St	oxir In	n (no a	D	etec		it					ching ry limit
analic Calific	POS	POS	POS	NEG	NEG	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	POS	NEG	POS	POS	POS	POS	-
Mouse Bio <mark>assay</mark>				NTD	NTD	70	62	39	40	NTD	40	43	392	143	177	103	83	48	55	44	51	67	NTD	NTD	792	NTD	NTC	NTD	-
Sesoreal	Pos-High	Pos-High	Pos-High	Neg- Low	Neg- Low	Neg-medium	Neg-low	Neg-low	Neg-low	Neg- low/medium	Neg-low	Neg-medium	Pos-High	Neg-medium	Neg-medium	Pos-High	Neg-medium	Neg-medium	Neg-low	Neg-low	Neg-medium	Neg-low	Neg-low	Neg-low	Pos-High	Neg-low	Neg-low	Neg-low	
	1	2	3	4	5	9	۲	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	-

Hy'shqe (Thank You)

Questions?

