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Marine Matters

Shelf Seas Ecosystems:
Modelling Challenges for
Past Present & Future States
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PML | Ziinyee Challenges: The Coastal Zone

Interface with the land
Eutrophication and pollution
30% primary production
Focal point for biogases
and nutrient cycling
60% of commercial fisheries
Sensitive to ocean
acidification

Projected Increase in
Human Population




Marine Ecosystem Change, a multiple driver problem
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PML | Gy Why downscale?

e Coupled OGCM'’s just don’t do the job...

Global NEMO Thermistor Chain
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See talk by Jason Holt later today
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Development of Regional Shelf Seas Modelling

e GCOMS (Global Coastal Ocean Modelling System).

 Model components:
— POL-Coastal Ocean Modelling System
— ERSEM (European Regional Seas Ecosystem Model)

e 1/10° resolution

* Includes important shelf processes:
Tides, upwelling, Benthic/pelagic
recycling

» Geographically linked to LME :
ocean governance scale

» Although global, the models are
regional
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ERSEM

*Resolves functional groups
Inclusion of benthic system

*Explicit decoupled cycling of C, N,
P, Si and Chl.

*Consequently flexible and adaptable
to a wide range of global
ecosystems.
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PML | rewnwane - Coupling Low Trophic Levels and High Trophic levels models

Predation \
FuncﬂonalResponsQ?

Combined effects of
fishing and climate

Climate

\__’



Generic Model Coupler

Aims

* Code the model only once (in FORTRAN)

* Run within various circulation models
— GOTM, GETM, MOMA4, ...

* Allow two-way biogeochemical coupling

— carbonate chemistry, NPZD, higher trophic levels

* Allow run-time configuration

— model selection, parameterization, and coupling

* Minimize code redundancy

* Aim for speed, but prioritize portability

aMEECE

Marine Ecosystem Evolution in a Changing Environment



PML | Gey Projections for future ecosystem states
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Projections for future ecosystem states

T-test of statistical significance of change in net primary-
production
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What are the major sources of Uncertainty

Global, decadal mean surface air temperature
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Natural Climate Variability

Climate signals - NAO

Relation of the NAO signal to model winter nutrients
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* Model transmits the
signal from atmospheric
forcing over ocean
dynamics to the
ecosystem.
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Parameter Uncertainty
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Model complexity

Biogeochemical models treat the ecosystem as a set of chemical
processes

Fine for physiological processes not so good for populations processes

The cell as a chemical factory

Currency — elemental concentrations C, N, P ,Si etc...

What is the correct level of detail
Required to capture this in a model?

Physiological
Processes

7

. Challenge to scale from the cell to
Environment

the globe and seconds to eons.




Next Generation Ecosystem Models

Abiotic <

Environment

Community
Structure &
Function

Inter-cellular

Grazing
Competition

Intra-Cellular
Physiology
Stress Responses

Currently most models
are constructed here
Levels of Organisation



Structural uncertainty

e The great unknown...
« Same biology (PLANKTOM) different physics

But what about same physics different biology?
Requires

e a common physical framework
o Skill assessment metrics + data

This will allow us to build up a multi-model multi-
scenario ‘super-ensemble’ using plankton models
of different complexity

Sinha et al 2009 Prog Oceangr.



PML L™ Scenario Uncertainty in Climate Forcing
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Marine Ecosystem Evolution ina Changing Environment
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Projected change in global mean temperature ||
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