

Mike Foreman¹, Badal Pal², Bill Merryfield², Diane Masson¹, John Morrison¹, Wendy Callendar¹³, Thomas Grime¹⁴, Eric Salathé⁵

¹Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney BC

²Canadian Centre for Climate Modelling and Analysis, Victoria BC ³School of Earth and Ocean Sciences, University of Victoria ⁴Department of Mechanical Engineering, University of Victoria ⁵Climate Impacts Group, University of Washington, Seattle

Outline

- ·RCM details
- ·Required forcing & progress to-date
- ·Historical trends & relevant ecosystem issues
- ·Summary & future work

The BC Shelf Model

Regional Ocean Modeling System (ROMS): Masson

- 3km resolution
- forcing: tides, wind, heat flux, freshwater discharge, open boundary

Over annual seasonal cycle, the model behaves realistically for

- tides
- thermal stratification (including summer upwelling)
- reversal of the shelf break current (northward in winter, southward in summer)
- eddy generation

New HP 256-cpu machine just delivered - will make decadal runs feasible

Future Forcing for the RCM

- 1. Tidal forcing unchanged
- 2. Wind & heat flux thru interpolation from GCMs and/or RCMs
- 3. Oceanic initial conditions & boundary forcing from ocean component of GCMs (or Enrique's NEP nested model)
- 4. Freshwater runoff by downscaling precipitation & temperature from RCMs

Fraser River projections: Morrison et al., J. Hydrology, 2002

Freshwater Flux along the BC Coast

- Baroclinic flows largely determined by salinity rather than temperature
 - freshwater discharges generate coastal currents which are imp't to marine ecosystems
- Total drainage basin ≈ 610,000 km² but 40% is ungauged (mountainous, sparsely populated)
- Technique developed to estimate ungauged runoff using precipitation, terrain, storage capacity etc. within watersheds
 - Verified with historical observations
 - will be used with future projections

Salish Sea Runoff

Recent & Projected BC Freshwater Fluxes

Ensemble of Regional Climate Models

- 6 RCMs in North American Regional Climate Change Assessment Program (NARCCAP)
- 50 km resolution
- 1971-2000 & 2041-2070 (A2) simulations
- http://www.narccap.ucar.edu

Mean (1971-90) daily precipitation (mm) as computed by top): the CCCma global climate model, bottom): the CRCM.

Changes in Oceanic Salinities & Temperatures

- Lateral boundary & initial 3D salinity & temperature fields for future simulations will either be anomalies added to present-day climatologies
 or from Enrique's model
- Anomalies computed from CCCma CGCM3.1 T47 SRES A2 run #4 -- Averages over shelf model domain
- BC waters are becoming fresher & warmer

Historical Trends & Future Projections of Offshore Winds

- network of 15 offshore buoys with observations back to 1958
- Looked at recent trends & future projections
- How well do GCMs & RCMs represent these winds?

GCM Wind Analyses

- 10m winds from 18 GCMs
- ·Interpolate to buoy locations
 - evaluate accuracy by comparing monthly & seasonal averages over specific periods
 - ·compute future projection anomalies
- · Merryfield et al (2009)

Table 1: Climate models used in this study and their atmosphe	oheric reso.	lutions
---	--------------	---------

	e 1: Climate models used in this study and their atmospheric resolutions				
Symbol	Institution/Model	Atmospheric	Horiz grid dimensions		
		resolution*	$lon \times lat$		
a	$\mathrm{BCCR}/\mathrm{BCM2.0}$	T63L31	128×64		
b	$\rm CCCMA/CGCM3.1(T47)$	T47L31	96 x 48		
c	$\rm CCCMA/CGCM3.1(T63)$	T63L31	$128 \ge 64$		
d	${\rm CCSR/MIROC3.2(med)}$	T42L20	$128 \ge 64$		
e	CNRM/CM3	T63L45	$128 \ge 64$		
f	${\rm CSIRO/Mk3.5}$	T63L18	192×96		
g	$\mathrm{GFDL}/\mathrm{CM}2.0$	$2.5^{\circ} \times 2^{\circ} \text{L}24$	144×90		
h	$\mathrm{GFDL}/\mathrm{CM}2.1$	$2.5^{\circ} \times 2^{\circ} L24$	$144 \ge 90$		
i	${\rm GISS/AOM}$	$4^{\circ} \times 3^{\circ} L12$	90 x 60		
j	GISS/EH	$5^{\circ} \times 4^{\circ} L20$	72 ± 46		
k	GISS/ER	$5^{\circ} \times 4^{\circ} L20$	72 ± 46		
1	INM/CM3.0	$5^{\circ} \times 4^{\circ} L21$	72 ± 45		
m	${ m IPSL/CM4}$	$2.5^{\circ}\times3.75^{\circ}\mathrm{L}19$	$96 \ge 72$		
n	MIUB/ECHO-G	T30L19	96 x 48		
О	MPI/ECHAM5	T63L31	192×96		
p	MRI/CGCM2.3.2	T42L30	128 ± 64		
q	UKMO/HadCM3	$3.75^{\circ}\times2.5^{\circ}\mathrm{L}19$	96 x 72		
\mathbf{r}	UKMO/HadGEM1	$1.875^{\circ}\times1.25^{\circ}\mathrm{L}38$	192 x 144		

^{*}Horizontal resolution is described by spectral truncation or grid box dimensions as appropriate, and vertical resolution by the number of model levels, e.g. L31.

Evaluation of 1976-95 Seasonal Average Winds

	: Climate models used in this study and their atmospheric resolutions					
Symbol	Institution/Model	Atmospheric	Horiz grid dimensions			
		resolution"	$lon \times lat$			
a	BCCR/BCM2.0	T63L31	128 x 64			
ь	CCCMA/CGCM3.1(T47)	T47L31	96 x 48			
e	CCCMA/CGCM3.1(T63)	T63L31	128 x 64			
d	CCSR/MIROC3.2(med)	T42L20	128 x 64			
e	CNRM/CM3	T63L45	128 x 64			
f	CSIRO/Mk3.5	T63L18	192 x 96			
g	GFDL/CM2.0	$2.5^{\circ}\times2^{\circ}L24$	144 x 90			
h	GFDL/CM2.1	$2.5^{\circ}\times2^{\circ}\mathrm{L}24$	144 x 90			
i	GISS/AOM	$4^{\circ} \times 3^{\circ}\text{L}12$	90 x 60			
j	GISS/EH	$5^{\circ} \times 4^{\circ}L20$	72 x 46			
k	GISS/ER	$5^{\circ} \times 4^{\circ}L20$	72 x 46			
1	INM/CM3.0	$5^{\circ} \times 4^{\circ}L21$	72 x 45			
$^{\mathrm{m}}$	IPSL/CM4	$2.5^{\circ} \times 3.75^{\circ} \text{L19}$	96 x 72			
n	MIUB/ECHO-G	T30L19	96 x 48			
0	MPI/ECHAM5	T63L31	192 x 96			
P	MRI/CGCM2.3.2	T42L30	128 x 64			
q	UKMO/HadCM3	$3.75^{\circ} \times 2.5^{\circ} \text{L}19$	96 x 72			
r	UKMO/HadGEM1	1.875° × 1.25°L38	192 x 144			
landaranta Laur	greated resolution is described by spectral truncation or said box dimensions as a					

Horizontal resolution is described by spectral truncation or grid box dimensions as approximate and particular resolution for the number of model banks on 1.23.

winter

 $u ms^{-1}$

summer

2030-49

2080-99

5% increase in magnitude, 5° rotation counterclockwise

GCM Wind Projections (scenario A1B) along the BC Shelf winter summer

Observed Changes in Upwelling Timing

1959-68

·Upwelling brings nutrients to ocean surface

1969-78

> Ecosystem productivity

1979-88

1989-98

1999-2008

Changes in Upwelling Magnitude & Timing

· Cumulative upwelling index (Schwing et al, 2006) integrates the wind stress over the upwelling period

·Bograd et al (2009) found similar trend off Washington state

Projected Changes in Upwelling Timing from 2 RCMs

300

300

Univ Wash RCM

Can RCM

Summary

- development of BC shelf, oceanonly, RCM continues
- Parallel efforts in downscaling to assemble forcing, initial & lateral boundary conditions
 - Historical analyses suggest changes in magnitude & timing of winds & freshwater discharges
 - will have important ecosystem consequences
- Decadal runs now possible with new 256-cpu computer

