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Climate change and the
California Current Ecosystem

Basic question:
How will fisheries in aregion of the world’s oceans (e.g., the California
Current) be affected by global climate change?

Ultimate goals
Inform fisheries-management decisions
Estimate the socioeconomic impacts of continued climate change
Assess the potential implications to the ecosystem as a whole

Necessary, preliminary guestions:
How is productivity expected to change in the California Current with
global climate change?

Do we understand why these changes are projected?



Temperature-Nitrate relationship of the
California Current Ecosystem

Temperature is inversely related to nitrate
concentration in the euphotic zone in the
California Current Ecosystem (CCE).

Kim and Miller (2007,
J. Phys. Oceanogr.)



Temperature-Nitrate relationship of the

California Current Ecosystem

Temperature is inversely related to nitrate
concentration in the euphotic zone in the
California Current Ecosystem (CCE).

Decreases in ecosystem productivity are
coincident with increases in temperature
at interannual to decadal time scales.

Kim and Miller (2007,
J. Phys. Oceanogr.)
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Temperature-Nitrate relationship of the
California Current Ecosystem

Our understanding of ecosystem change in the CCE is focused on the
variability between warm, unproductive periods and cold, highly productive
periods.

Cool Period Warm Period
replete nutrients limited nutrients
high biologic production low biologic production

Increased water-column stratification with global warming has been
hypothesized to result in decreased nutrient supply and reduced primary
and secondary production in the CCE.



Temperature-Nitrate relationship of the
California Current Ecosystem

Strateqy:

Explore the effect of climate change on the nutrient supply and production
in the CCE using a basic biogeochemistry model (TOPAZ) coupled to an
ocean-atmosphere general circulation model (GFDL CM2.1).

This combination is known as GFDL’s Earth System Model (ESM2.1);
described by Jeff Polovina this morning.

Earth-System Model 2.1 (ESM2.1)

atmosphere-ocean general circulation model: CM2.1 (1° ocean, 2° atmosphere)
Delworth, et al. (2006, J. Climate)

basic biogeochemistry model: TOPAZ - major nutrients (N, P, Si and Fe) and
three phytoplankton classes
Dunne, et al. (2005, 2007; Global Biogeochem. Cycles)



Historic modes of variability

Current understanding is largely based on our knowledge of main modes of
natural variability in the climate and hydrography of the Pacific, namely the

Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation
(NPGO).

PDO Mode; PC1 NPGO Mode; PC2
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Longitude Longitude

Di Lorenzo, et al. (2008, Geophys. Res. Lett.)



Historic modes of variability in ESM2.1

GFDL climate model ESM2.1 also display variability at decadal frequency in

the North Pacific.

modeled 1860 SST, PC1

27 03 %jof variance

e

_ 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860
Year

modeled 1860 SST, PC2

11 849 of variance

ATy

1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860
Year




Future modes of variability in ESM2.1

However, in the coming century, variability is expected to be dominated by
the long-term trend.

2001-2100 SST, PC1 2001-2100 SST, PC2
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Mean fields and long-term trends

How does the GFDL ESM 2.1 represent different properties of the CCE, and how
do these properties change with global warming?

The following plots will have four panels:

Fossil-fuel intensive

Pre-industrial mean mean Difference
(1860, 20-yr run) (SRES A2 2081-2100)  (Future — pre-industrial)
PAST FUTURE DIFFERENCE

Time series for the CCE (128°W to coast, 30°N to 40°N , upper 200-m avg.)
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Mean fields and long-term trends:
temperature

1860 Temperature (OC) 2081-2100 Temperature (OC) Change in Temp ( C)
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Mean fields and long-term trends:
mixed-layer depth

1860 MLD( )
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Projected responses in the CCE include a shallower mixed-layer
depth and warmer surface layer. Given the historical record, we may
expect decreased nutrient supply and reduced production.




Mean fields and long-term trends:
nitrate

1860 NO, conc. (umol L) 2081-2100 NO, conc. (umol L) NO, Change (umol L)
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Mean fields and long-term trends:
primary production

1860 Pr. Prod (gC m yr ) 2081-2100 Pr. Prod (gC m yr ) Change (gC m yr )
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Unexpected biological response in the CCE

Current paradigm of CCE variability:

Cool Period Yarm Period - The nitrate-temperature
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Unexpected biological response in the CCE

Current paradigm of CCE variability:

Cool Period

replete nutrients
high biologic production

Warm Period

limited nutrients
low biologic production
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The nitrate-temperature
relationship is negative over
interannual to multidecadal
periods.

linear expectation for [NO,] given
historical temperature relationship



Unexpected biological response in the CCE

The nitrate-temperature
relationship is negative over
interannual to multidecadal
periods.

Does not apply to
long-term warming
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Mean fields and long-term trends:
wind-stress

1860 Wlnd Stress 2081-2100 Wind Stress Change in Wind Stress
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Mean fields and long-term trends:
wind-stress curl

1860 Curl (x10 Nm ) 2081-2100 Curl (><10 Nm ) Change(xw Nm )
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Mean fields and long-term trends:
upwelling rate

1860 Upwelllng (m day ) 2081-2100 Upwelllng (m day ) Change in Upwelling (m day'1)
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Range of possible causes for the regional
Increase In NO, concentration:

1. Increase in the local vertical velocity of waters upwelled into the euphotic
zone with a corresponding increase in NO; flux.

2. Change in the horizontal flux of water into the euphotic zone.

—trmtgare-stratifreation:

4. Increase in the concentration of NO, into the source waters supplied to the
region.

e . I : hrartiomr-hiotemien .
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Range of possible causes for the regional
Increase In NO, concentration:

1. Increase in the local vertical velocity of waters upwelled into the euphotic
zone with a corresponding increase in NO; flux.

2. Change in the horizontal flux of water into the euphotic zone.

—trmtgare-stratifreation:

4. Increase in the concentration of NO, into the source waters supplied to the

region.
-5_—e|-mgg-i11 Change in water transport of waters to the region? Iggs
or
—crease T

Change in the NO, concentration in the waters
supplied to the region?




Change in the advective supply of NO,?

from North
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FLUX KEY:

1860, 60-yr | NO; | H,O

avg: flux flux

2081-2100 | NO5 | H,O

avg: flux flux

change = |A NO3| A H,O
from South

0.5 kmolst | 0.5 Sv
1.1 kmoist| 0.4 Sv
0.6 kmolst |-0.1 Sv




Change in the advective supply of NO,?

from North

0.8 kmol st
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+60% + 10%

FLUX KEY:

1860, 60-yr | NO; | H,O

avg: flux flux

2081-2100 | NO5 | H,O

avg: flux flux

change = |A NO3| A H,O
from South

0.5 kmolst | 0.5 Sv
1.1 kmoist| 0.4 Sv
0.6 kmolst |-0.1 Sv




Ventilation of CCE source waters

Changes in local circulation alone cannot explain the projected increase in
NO; supply. The change in nitrate concentration in the source waters is
more important as the local changes in advection.




Ventilation of CCE source waters

Changes in local circulation alone cannot explain the projected increase in
NO; supply. The change in nitrate concentration in the source waters is
more important as the local changes in advection.

New guestion:
What is the history of waters before they reach the CCE?




Ventilation of CCE source waters
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Ventilation of CCE source waters
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Ventilation of CCE source waters

Z00m Cal Current minus 2 years -- 1860
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Ventilation of CCE source waters

Z00m Cal Current minus 3 years -- 1860
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Ventilation of CCE source waters
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Ventilation of CCE source waters
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Ventilation of CCE source waters
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Ventilation of CCE source waters
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Ventilation of CCE source waters
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Ventilation of CCE source waters
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Ventilation of CCE sourc
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Ventilation of CCE source waters

Waters follow a deeper, less ventilated trajectory en route to the CCE.
Reduced ventilation of CCE source waters leads to an increase in NO,
content.

w
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Ventilation of CCE source waters

Conceptual diagram: B pre-industrial B 2081-2100

source-water
trajectory



Ventilation of CCE source waters

Conceptual diagram: B pre-industrial B 2081-2100

poleward shift
in westerlies

decreased
downwelling over
subtropical gyre

shallower surface

mixed layer
source-water

trajectory

Atmospheric and hydrographic changes have an ecological impact: increased
nutrient supply to the CCE with increased North Pacific stratification on centennial
scales.



Ventilation of CCE source waters

Decreases in ventilation of source waters to the CCE have

biogeochemical consequences aside from increases in NO,.
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Conclusions

GFDL'’s Earth System Model (ESM2.1) coupled with a biogeochemistry model
(TOPAZ) projects that nitrate content, primary, and secondary production of
the CCE will increase in the coming century with global warming. Oxygen
content and pH will continue to decline.
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(TOPAZ) projects that nitrate content, primary, and secondary production of
the CCE will increase in the coming century with global warming. Oxygen
content and pH will continue to decline.

This result, though counterintuitive, can be attributed to increased
stratification, decreased mixing, and less negative wind-stress curl over the
subtropical North Pacific.




Conclusions

GFDL'’s Earth System Model (ESM2.1) coupled with a biogeochemistry model
(TOPAZ) projects that nitrate content, primary, and secondary production of
the CCE will increase in the coming century with global warming. Oxygen
content and pH will continue to decline.

This result, though counterintuitive, can be attributed to increased
stratification, decreased mixing, and less negative wind-stress curl over the
subtropical North Pacific.

Are we yet able to see this signal in measurements?



Conclusions

Whitney, et al. (2007, Prog. Oceanogr.)



Conclusions

Differences in oy = 26.5, (1999-2009) — (1984-1998)

(Courtesy of Steven Bograd at PFEL, Pacific Grove)



Conclusions

B Secchi depth (a proxy for
{ euphotic zone depth and
*'} chlorophyll content) has

¢ e shoaled in in the CCE over 50
" years.

(Aksnes and Ohman, 2009,
Limnol. Oceanogr.)
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Conclusions

GFDL'’s Earth System Model (ESM2.1) coupled with a biogeochemistry model
(TOPAZ) projects that nitrate content, primary, and secondary production of
the CCE will increase in the coming century with global warming. Oxygen
content and pH will continue to decline.

This result, though counterintuitive, can be attributed to increased
stratification, decreased mixing, and less negative wind-stress curl over the
subtropical North Pacific.

This projection has no clear analogue in the observational record; conditions
of warm, nutrient enriched waters are unlike what we have observed directly.
However, we may be seeing the first signals in the longest time series.



Conclusions

Regarding continued use of climate models for regional projections of
ecosystem conditions:

Response at the regional scale may differ substantially from that at
the basin scale.

Current paradigms relating climate variability and fisheries may not
persist over the long term.

- Empirical relationships may lose explanatory power

- Importance of different mechanisms may change

Regional studies of climate change need to be framed in the context
of global scale change. Dominant influences may be overlooked if
changes at the regional boundaries are not considered.



Thanks!
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