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Outline
• Motivation and rational: temporal and 

spatial of R and S variability compared

• Describe Self organizing maps (SOM)

• Apply to time series trends in the 

ln(R/S) response variable

• Discuss the utility of SOM
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Trends in Recruitment Time Series 
Anomalies

• Temporal and spatial patterns of R and S 
variability from 17 stocks were compared 
among functionally analogous species and 
similar feeding guilds from four marine 
ecosystems.

• Calculate the anomaly in ln(R/S), 
• Pool by feeding guild (benthic vs. pelagic) or 

ecosystem (EBS, GOA, GB/GOM, BNS) by 
calculating the average anomaly per year

• Look for within and cross ecosystem trends
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ln(R/S) Response Variable

• EBS and GOA follow same trend 
(r=0.64, p<0.01)

• GB and BNS follow same trend 
(r=0.89, p<0.01)

• EBS/GOA out of phase with 
GB/BNS (r=-0.67, p<0.01)

• Declining survival since mid-90’s 
for all but EBS.  Declining pelagic 
survival for GB and BNS.

• Improving benthic survival for GB 
and BNS since late 1970’s. Declining 
benthic survival for EBS and GOA 
over same period.

• Recent upturn in benthic survival 
in EBS since late 1990’s and in 
pelagic survival since mid 1990’s.
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Survival Changes all Four Ecosystems: Benthic 
Regime Shift ~ 1989?

BNS.Benthic 1964-2002
Probability = 0.1, cutoff length = 10, Huber parameter = 1
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GB.Benthic, 1963-2004
Probability = 0.1, cutoff length = 10, Huber parameter = 1
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GOA.Benthic, 1961-2004
Probability = 0.1, cutoff length = 10, Huber parameter = 1
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EBS.Benthic, 1960-2005
Probability = 0.1, cutoff length = 10, Huber parameter = 1
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Climate forcing of the Barents/Norwegian Sea?
BNS.Benthic 1964-2002

Probability = 0.1, cutoff length = 10, Huber parameter = 1
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BNS SST, 1948-2006
Probability = 0.1, cutoff length = 10, Huber parameter = 1
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Purpose
• Motivation and rational: temporal and 

spatial of R and S variability compared

• Describe Self organizing maps (SOM)

• Apply to time series trends in the 

ln(R/S) response variable

• Discuss the utility of SOM
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Methods

• Artificial neural network (ANN)
--

 
Self organizing mapping (SOM)
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Wikipedia http://en.wikipedia.org/wiki/Self-organizing_map

A self-organizing map (SOM) or self-organizing feature map 
(SOFM) is a type of artificial neural network that is trained using 
unsupervised learning to produce a low-dimensional (typically two- 
dimensional) map. Self-organizing maps are different from other 
artificial neural networks in the sense that they use a neighborhood 
function to preserve the topological properties of the input space. 

… This makes SOM useful for visualizing low-dimensional views of 
high-dimensional data, akin to multidimensional scaling. The model 
was first described as an artificial neural network by the Finnish 
professor Teuvo Kohonen, and is sometimes called a Kohonen map. 

… Therefore, SOM forms a semantic map where similar samples are 
mapped close together and dissimilar apart. This may be visualized by 
a U-Matrix (Euclidean distance between weight vectors of neighboring 
cells) of the SOM. 

SOM may be considered a nonlinear generalization of Principal 
components analysis (PCA) …. SOM has many advantages over the 
conventional feature extraction methods such as Empirical Orthogonal 
Functions (EOF) or PCA. 

http://en.wikipedia.org/wiki/Self-organizing_map
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Principal_components_analysis
http://en.wikipedia.org/wiki/Principal_components_analysis


Studying an ecological community.  

Interpretation

Sample units
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• Ordination

Principal Component Analysis (PCA)
Polar Ordination (PO)

Correspondence Analysis (CoA)
Nonlinear Multidimensional Scaling (NMDS) 
…

Complex data set

SOM

•Artificial Neural Network (ANN)

• Classification

Large sample of plant or animal abundance drawn from an ecological 
community.  A huge matrix often difficult to analyse and interpret.
Ordination to display statistical sample units.Limitations: strong distortions with non-linear species abundance 
relations, horseshoe effect, arch effect, outliers, missing data, disjointed 
data matrix, ...

Self Organizing Maps, a good tool to simplify high dimensional dataset.
Bacpropagation neural network, for prediction and discrimination.

BP



The SOM method

Sample units
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• Learning of the reference vectors (iterative)

• Put the SUs on the
map

SU
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- random choice of a sample unit
- Locating the best matching unit (BMU)

and its neighbors

Reference vectors
(virtual units)

- learning of the BMU

Species
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.

.

.

The dataset is projected in a non-linear way onto a rectangular grid laid 
out on a hexagonal lattice: the Kohonen map.
In each hexagon, a virtual unit (VU) will be considered. The virtual units 
are virtual sites with species abundance to be computed. The 
modifications of the VUs are made through an ANN.



• Teaching the SOM: the species abundance is computed 
for each virtual units.

• Computing the U-matrix.

• Mapping the Sample Units onto the U-matrix.

• Making the clustering structure apparent for the human 
expert of the dataset by selecting the brightness of the 
display.

Clustering with Self-Organizing Maps



• With a large dataset, when dendrograms become very 
difficult to read, the SOM and the U-matrix are able to 
provide a very convenient visualisation.

• U-matrix is not a  "ready made" clustering algorithm but 
rather a tool for the inspection of high dimensional data.

• The clusters have to be « seen » on the map by the human 
dataset expert.

• The expert can define all types of clusters including the 
non-convex ones.

Clustering with Self-Organizing Maps
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k-means clustering is a method of cluster analysis which 
aims to partition n observations into k clusters in which 
each observation belongs to the cluster with the nearest 
mean. It is similar to the expectation-maximization 
algorithm for mixtures of Gaussians in that they both 
attempt to find the centers of natural clusters in the data. 

It has been shown that the relaxed solution of k-means 
clustering, specified by the cluster indicators, is given by 
the PCA (principal component analysis) principal 
components, and the PCA subspace spanned by the 
principal directions is identical to the cluster centroid 
subspace specified by the between-class scatter matrix. 

K-means Clustering

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Principal_component_analysis


Apply model to four ecosystem data

• Ln(R/S) of pelagic
• Ln(R/S) of benthic
• Ln(R/S) of the pooled for ecosystems

May 7, 2010 17
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U-matrix
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logR/S Pelagic
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lnR/S Benthic
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Conclusions
• SOMS and k-means clustering provide a highly visual tool to 

easily identify patterns in the timing of high or low productivity 
years across both species and ecosystems. 

• Many of the peaks in the time series were synchronous within 
an ocean basin and opposing alternations in patterns of 
productivity were observed in ecosystems in between the 
Atlantic and Pacific Ocean basins. 

• Basin-scale results (similar within but different between) 
suggest that productivity in the two geographically broad 
areas are connected by unknown climatic mechanisms that, 
depending on the year, generate low frequency opposing 
alternations after 1976 and 1988 in the two basins.



Thank you for paying attention
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