

Will diversity assist adaptability?

Renae Tobin and Stephen Sutton

Fishing and Fisheries Research Centre

James Cook University

AUSTRALIA

Background

- Traditional fisheries management
 - Few, larger operators
 - Targeting one or a few species
 - Minimise effort shift between fisheries / areas

- Managing for adaptation
 - Diverse operation types
 - Targeting and marketing multiple species
 - Ability to shift effort between fisheries / areas

How does diversity assist adaptation?

Case study:

Queensland east-coast inshore finfish fishery (Australia)

- "The Inshore Fishery"

- Inshore habitats
 - bays, creeks, estuaries

How does diversity assist adaptation?

Case study:

Queensland east-coast inshore finfish fishery (Australia)

– "The Inshore Fishery"

- bays, creeks, estuaries
- Commercial set net

How does diversity assist adaptation?

Case study:

Queensland east-coast inshore finfish fishery (Australia)

– "The Inshore Fishery"

- Inshore habitats
 - bays, creeks, estuaries
- Commercial set net
- Charter and recreational line
- Multiple species
 - Main = barramundi
- Driven by rainfall and freshwater flow – variable year-to-year

How does diversity assist adaptation?

Case study:

Queensland east-coast inshore finfish fishery (Australia)

- "The Inshore Fishery"
- Commercial net (~200 active vessels)
- Charter line (230 vessels)
- Socio-economic indicators
 - Working with managers and fishers
 - Monitor success of fisheries management goals
 - Including "DIVERSITY"

- Indicators of adaptive capacity
 - Demographics:
 - Years of experience
 - Investment and debt
 - Patterns of use:
 - Fishing area / range
 - Species number targeted
 - Fishery number

Indicator Commercial

Experience Average 28 years

Investment Low

Boats ~\$26,000 replacement value

Debt Low to zero (83%)

Fishing range Furthest = 1,450 km

Median = 88 km

Target sp Multiple

Many secondary

fisheries 1 to 6;

7% solely dependent on inshore fishery.

	<u> </u>
Indiantar	Commercial
Indicator	Commercial

Experience Average 28 years

Investment Low

Boats ~\$26,000

Debt Low to zero (83%)

Fishing range Furthest = 1,450 km

Median = 88 km

Target sp Multiple

Many secondary

fisheries 1 to 6;

7% solely inshore

Charter

8 yrs

Medium

Boats ~\$50,000

Low to zero (55%)

Furthest = 1,705 km

Median = 55 km

75% Barramundi

Very few secondary

1 to 2;

70% dependent on inshore

- Hypothetical scenario:
 - -Focusing on barramundi
 - –Increased water temperatures
 - –Sporadic rainfall in the north no freshwater flow
 - -Barramundi move south

- Hypothetical scenario:
 - -Focusing on barramundi
 - –Increased water temperatures
 - Sporadic rainfall in the north no freshwater flow
 - -Barramundi move south
 - –Disappear from Cairns north
 - Change in species composition in the north of Queensland
 - -How do these fisheries react?

Commercial fishers

Option 1) Move

- 45% range >100 km
- 12% range >500 km

Commercial fishers

Option 1) Move

- 45% range >100 km
- 12% range >500 km

Commercial fishers

Option 2) Change species

- All target and market multiple species
- Whiting, bream, etc...

Charter fishers

Option 1) Move

- 35% range >100 km
- 21% range >500 km

Charter fishers

Option 1) Move

- 35% range >100 km
- 21% range >500 km

Charter fishers

Option 3) Change fisheries

- 70% dependent on inshore
- Highly specialised vessels

- Adaptive capacity
 - Commercial:
 - Can move
 - Can change species
 - Can change fisheries
 - Low investment and debt can restructure
 - Charter:
 - Some can move
 - Most can't change species
 - Most can't change fisheries
 - High investment hard to restructure
 - Young, high education, training, previous employment, low household dependence on fishing

Socio-ecological resilience

Socio-ecological resilience

Social resilience

Conclusion

- To keep a fishery, need socio-ecological resilience
 - Commercial inshore fishers yes
 - Longevity of experience
 - Variable environment
 - Learn from them?
 - Diversity
 - Harder to manage issues of effort shift
 - Need to find way to:
 - keep diversity = adaptive capacity
 - without compromising sustainability

Questions?

Thanks to all the Queensland fishers who put up with some very long surveys!

And thanks to Andrew for many thoughtful discussions..

renae.tobin@jcu.edu.au

stephen.sutton@jcu.edu.au

