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Climate models and fisheries: 
Challenges and opportunities 

OR 

Can climate models tell us anything about 
bottom-up control? 



Why focus on bottom-up control

• Strength of ocean biogeochemical- 
circulation models is their ability to get 
transport.

• So IF we get the nutrient fields right and 
the transport right, we can say something 
intelligent about productivity.

• … and its links to climate modes.



Challenge 1: Is there bottom up control?
While large changes are seen in 
fisheries…

(Mantua et al., 1997)

Changes in PP are much smaller!



One response- food supply doesn’t matter

• Range/habitat changes (Nye-winter flounder) 
• Temperature/oxygen control of growth rates 
• Larval transport 
• Extreme events (Hare-N. Atl. croaker)
• Insert your favorite mechanism here...

Or are there amplifiers that we might be missing?



Opportunities: 
Evaluating/quantifying ideas

• Size structure (“All fish is diatoms”)
• Seasonality (“match-mismatch”)
• Salinity (important in high latitudes)
• Surroundings (not core regions of high 

production)

Models can quantify the potential impacts as these 
ideas work their way through the system.



Key idea 1: Size structure
• When 

phytoplankton 
productivity is low, 
large plankton are 
rare.

• When 
phytoplankton 
productivity is high, 
large plankton are 
more common.

Agawin, Duarte and Agusti, LO, 2000

~Five orders of magnitude!

Two orders
of magnitude



Other evidence for this

Can we use these relationships to put constraints on biological cycling?

Kostadinov et al., JGR, 2009
Smallest particles (plankton?)  range over 2 orders of magnitude. 
Largest particles (plankton?) range over 6 orders of magnitude



GFDL’s new Ocean BGC model (TOPAZ)
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Implementation: Allometric grazing
Dunne, Armstrong, Gnanadesikan and Sarmiento, GBC, 2005
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Result: Approximate steady state
Dunne, Armstrong, Gnanadesikan and Sarmiento, GBC, 2005
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Same range of growth rates gives much larger range in large plankton



Embedded in physical model
• Start with temperature and salinity.
• Find density
• Find pressure
• Compute velocities given pressure, surface winds 

(Coordinate system)
• Compute transport of mass, T, salt given surface 

fluxes. (Eddies, mixing)
• Redo.
Code: GFDL Modular Ocean model (model also being 

run in isopycnal model)
Forcing: Reanalysis (CORE) and Coupled Model 

(ESM2.1)



Evaluation of model fidelity



Relative interannual variability

Ocean-only

Fully coupled

Small biomass                  Large biomass

Large plankton vary much more than small!



Average relative IA variability
Large varies 
more than small 
in tropics

Interannual 
variability similar 
in coupled, 
ocean-only 
models

Seasonal shifts 
in spring 
important!

Coupling 
increases 
seasonal shifts!



High latitude variability- the  central 
Labrador Sea

Deep convection
suppresses growth

Low surface density
suppresses convection

Salinity drives density

Challenge: How do we get this kind of variability in reanalyses?



Tropical variability driven by winds

Challenge: Small details in ENSO physics can matter!



A cautionary example
• Chlorophyll 

can vary less 
than large 
biomass.

• Variations not 
necessarily 
correlated.

• Salinity can 
be driver 
instead of 
temperature



Need to move beyond…

• Focus on chlorophyll, start to verify particle 
size as remotely sensed tool.

• Forced models (coupled reanalysis?) to 
get salinity-forced seasonal variations in 
high latitudes.

• Focus on highly productive regions- are 
surrounding areas more important for 
recruitment (and for which species)?



Arigato!
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