

From a climate to a multi-scale Earth System Model: Technical challenges and advances

Enrique Curchitser

Institute of Marine and Coastal Sciences, Rutgers University

WARNING!

Do not try this at home

Collaborators

- Kate Hedstrom (ARSC/U. Alaska Faribanks)
- Jon Wolfe (NCAR)
- Bill Large (NCAR)

Outline

- Motivation for Nested Models
- Implementation: Re-gridding, merging and time-stepping
- (Results) Yesterday's talk
- Future Goals

Climate model biases

Climate model schematic

Forcing of the regional domain

Atmospheric Surface Data

Ocean Lateral Boundary Data

The new global SST

temperature (kelvin)

cpl6 output netCDF data file

Range of temperature: 270.948 to 304.392 kelvin

Range of ni_o: 0 to 319 Range of nj_o: 0 to 383

Current time: 2159 days since 0000-01-01 00:00:00

Frame 1 in File PR.T85_g14.C2.bluefire.composite.cpl6.hi.0005-12-01-00000.nc

Range of ni_o: 0 to 90 Range of nj_o: 0 to 85

Frame 90 in File SST.T85_g14.C2.bluefire.composite.cpl6.hi.0005-12-01-00000.nc

Re-gridding From ROMS To POP

- Relative Differences in Resolution Requires Different Techniques
- Best Achieved By "Normalized" Conservative Approach --Forces Sum of Weights to 1
- Note: Examples below use constant temperature fields for visualization

Bilinear

Conservative

Normalized Conservative

Merging POP and ROMS SST's

 Merging along boundaries often improved by some "blending" of results from the different models

Time Flow: (ith ocn-cpl coupling interval)

 A_r = atm state at atm radiation time

 $\longrightarrow \Box F_r = atm/ocn flux (A_r, SST_{i-1})$

 $\Box F_{i-1} = \langle F_r \rangle$ averaged over interval i-1

[AB]L_{i-1} = pop boundary conditions mapped to romsA and RomsB

Some fun facts

- ROMS grid is ~0.1° resolution, 224x640 grid cells;
 POP is a nominal 1°.
- ROMS runs with a timestep of 450 s and couples with POP daily.
- Throughput is ~2 yrs/day on two bluefire nodes, compared to ~1.5 yrs/day for baseline simulation.

So what?

SST, T_air and Precip

Final Remarks and Future Plans

- We have designed and implemented a new multiscale ocean within a climate model.
- We are exploring the implications of both down- and up-scaling in coupled models.
- Some further work planned including multiple nested domains, ecosystem and bio-economic models.
- Some issues with downscaling biogeochemistry— How to make two models with different currencies work communicate?
- We see this as part of an Earth System Model -Climate with ecosystems and social models.