Development of a climate-to-fish-to-fishers model: proof-of-principle using long-term population dynamics of anchovies and sardines in the California Current

www.cibnor.gob.mx

ARSC DoD Supercomputing Resource Center

North Pacific Marine Science Organization

NOAA HPCC High Performance Computing and Communications

Kenneth A. Rose

<u>Louisiana</u> State University

Enrique N. Curchitser Rutgers University

Kate Hedstrom
Arctic Region Supercomputing Center

Jerome Fiechter
University of California – Santa Cruz

Miguel Bernal Instituto Español de Oceanografía (Spain)

Shin-ichi Ito Fisheries Research Agency

Salvador Lluch-Cota CIBNOR (Mexico)

Bernard A. Megrey
National Marine Fish Service

Chris Edwards

University of California – Santa Cruz

Dave Checkley Scripps Institute

Alec MacCall

National Marine Fisheries Service

Tony Koslow

Scripps Institute - CALCOFI

Sam McClatchie

National Marine Fisheries Service

Ken Denman

Institute for Ocean Sciences (Canada)

Francisco Werner Rutgers University

Introduction

- Much emphasis on climate to fish linkages
 - Global change issues
 - Bottom-up, middle-out, top-down controls
- Increasing pressure for ecosystem-based considerations in management
- Continuation of the NEMURO effort
 - Multi-species, individual-based, physics to fish model
 - Proof of principle

Proof of Principle

- Sardine anchovy population cycles
 - well-studied
 - teleconnections across basins

- Good case study
 - Forage fish tightly coupled to NPZ
 - Important ecologically and widely distributed
 - Cycles documented in many systems
 - Recent emphasis on spatial aspects of cycles

Provided by: Salvador E. Lluch-Cota Source: Schwartzlose et al., 1999

California Current

Why IBM for Fish

- Natural unit in nature
- Allows for local interactions and complex systems dynamics
- Easier representation of
 - Complicated life histories
 - Plasticity and size-based interactions
- Conceptually easier to model movement

NEMUroms.SAN

- Model 1: 3-D ROMS for physics
- Model 2: NEMURO for NPZ
- Model 3: Multiple-species IBM for fish
- Model 4: Fishing fleet dynamics
- Today: progress to date
 - Solved many of the numerical and bookkeeping
 - Next is to add realistic biology

Model 1: ROMS

Grid:

 44x114 horizontal grid
 30 km resolution
 30 vertical levels

 Run duration: 40 years (1960-2000)

Hourly time step

Model 1: ROMS

- Boundary and initial conditions
 - SODA-POP (1958-2006)
 - Monthly surface elevation, velocity, temperature, and salinity fields
 - Carton et al. 2000
- Surface forcing
 - CORE2 (1958-2006)
 - 6-hour wind and heat fluxes
 - Daily radiation fluxes
 - Monthly precipitation
 - Large and Yeager 2008

Model 2: NEMURO

Model 3: Fish IBM

Species Types

- Sardines and anchovy fully modeled
 - Individual: reproduction, growth, mortality, movement
 - Competitors (food, space)
 - Predator-prey (eat each other)
- Predator only for spatially-dynamics mortality
 - Movement only
 - Relative biomass to scale mortality
- Fishing fleet
 - Movement based on engineering, economics, behavior

Fish IBM: Full members

- Life cycle framework
 - Easy to say, creates bookkeeping challenge
 - Cannot keep adding new fish to the model

- Four vital processes:
 - Growth and development
 - Reproduction
 - Mortality
 - Movement

Fish IBM: Growth

- Compute change in weight each time step
- Bioenergetics-based
- Consumption determined by multispecies functional response
 - NEMURO zooplankton in the cell
 - Other individual fish in the neighborhood
- Once mature, allocate energy to growth or reproduction

Fish IBM: Development

- Eggs, yolk-sac larvae, larvae
 - Temperature-dependent stage durations

- Birthday on January 1 of each year
 - Juvenile to subadult on first January 1
 - Subadult to adult with maturity at second birthday

Fish IBM: Reproduction

- Two strategies
 - Capital and income
 - Hybrid that allows switching
- Beginning and ending temperatures (or days)
- Check energy to initiate a batch
 - Capital using condition
 - income using yesterday's weight change
- Batches develop based on temperature
- Accumulate eggs each day and locations of spawners

Fish IBM: Mortality

- Other natural
 - Constant rates by stage (e..g., 0.05/day)
- Starvation: too skinny
- Fish eating fish
- Predator-dependent (species type 2)
- Fishing
 - Constant
 - Fishing fleet dynamics

Fish IBM: Movement

- Eggs, yolk-sac, and larvae move by physics
 - assumed at surface for now
- Juveniles and adults move by behavior
 - Day-to-day
 - Seasonal migrations
- Each individual has a continuous x, y, and z position
- Position mapped to 3-D grid every hour to determine cell location and local conditions

Fish IBM: Kinesis Option for Movement (Humston et al. 2004)

 X and Y velocities of each individual is computed hourly based on kinesis behavior (response to temperature)

 Kinesis is the sum of random and inertial velocities (happiness)

 Horizontal done 24 times a day using first hour's conditions; vertical is hourly

Density-Dependence

- Growth via feedback effects on prey
 - Starvation
 - Fecundity
- Other possibilities:
 - Maturation (mediated through growth)
 - Mortality via predation (movement only species) and fishing
- Movement
 - Spreading out under high abundances
 - Costs of inferior habitats?

Numerical Details

- Major numerical and bookkeeping challenges
- See Kate Hedstrom talk in workshop
- We are working within ROMS source code, using the available particle tracking features
- Solving everything simultaneously
- Using super-individual approach (Scheffer et al. 1995)

Mean weight on January 1

Subadults and Adults every 5 days

Total eggs produced

Annual average based on 5-day snapshots

Locations every 5 days for one year Grey shading shows bottom topography

Next Steps

- Investigate the causes of low-frequency cycles in sardine and anchovy
 - remember that from the introduction!!!!
- Parallel effort in Japan to provide a contrast

Ultimately,

Next Steps

- It can be done proof of principle
- Computing:
 - ShaRCS at UC-Berkeley
 - 128 CPUs (Xeon 2.4 GHz, 272 nodes, 8 cores/node, 3 GB/core)
 - -40-year run at 30-km resolution, hourly, with 20,000 super-individuals takes 2.25 days
 - Also access to ARSC DoD Supercomputing Resource Center (Fairbanks) and NOAA's Jet at Earth Systems Research Lab (Boulder)

Next Steps

- It can be done proof of principle
 - UC Shared Research Computing Services (ShaRCS) Berkeley
 - 128 CPUs (Xeon 2.4 GHz, 272 nodes, 8 cores/node, 3 GB/core)
 - 40-year run with 20,000 super-individuals takes 2.25 days
 - Also access to ARSC DoD Supercomputing Resource Center and NOAA's Jet at Earth Systems Research Lab (Boulder)
- So it is useful?
 - Now we will add biological realism
- Can we calibrate and validate this model?
 - Very challenging: Physics, NPZ, Fish
 - We have a plan