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*|CES/PICES/GLOBEC-SPACC workshop “Changes

Impetus for this study

in distribution and abundance of clupeiform small
pelagic fish in relation to climate variability and
global change” (WKSPCLIM)

eParticipants expertise was in Northeast Atlantic /
Mediterranean & Northwest Pacific species (sprat,
European and Japanese anchovy & sardine)

*\We reviewed knowledge on ecophysiology of
each life stage to 1) help understand processes
behind patterns in time series, 2) identify gaps in
knowledge, 3) recommend future research and

aid in biophysical model development

o A total of 250 references was reviewed in 1470

lines of text and 7 tables and | will tell you

everything in 13 min..
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composition/quality
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Japanese sardine & anchovy

sardine
anchovy

Sea surface height (SSH)
anomaly in the Kuroshio
Extension region indicates
Kuroshio Extension axis
location

southward intrusion of
Oyashio waters indicated by

area of water with < 10°C
south of 37°N.




Sardine Anchovy

European sardine & anchovy
adults into the North Sea
1960°s (again...)

1970‘s

1980°s

CPUE
(# *hr trawl1)

1990°s

11 - 100

101 - 1000

1001 - 10000
@ 10001 - 100000

International Council for the
Exploration of the Seas Data, IBTS

(all quarters) 2000°s



Changes in sprat in the Baltic Sea
Pseudocalanus acuspes
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One of the reasons
SUNBAY Nikxer =~ We are all here...
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Understanding
Interacting Effects

\ Shirasu fishery

\Recruitment to
main fishery



Projecting Climate Impacts...




Projecting Climate Impacts using Coupled Models

Individual-based
Eggs & Larvae

“Passive
Particles”

1) Hydrodynamic &

Ecosystem models
prey field, water currents

Batch Spawning

Adult Energy
Allocation

Models
(End to End)

Dynamic
Energy Budgets

Post Iarval to adult Habitat Utilization




Batch Spawning & Adult Energy Utilization
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Area of Study

Bay of Biscay
English Channel to Portugal

North East Atlantic

North West African Regions
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Routine 02 Consumption by Small Pelagics
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Summary of spawning adults

e Explore feedbacks between reduced juvenile growth rates on
maturation process and spawning condition of small pelagic fishes
(laboratory studies -- DEB modelling).

e Understand how changes in food quality / prey species control
spawning windows of small pelagic fish species (either the onset or
their extension).

e Examine how food quantity and quality affect the phenology and
magnitude of reproduction in order to capture how climate-driven
changes in zooplankton species composition might act as a “bottom-
up” regulator of productivity

Japanese Sardine European Anchovy

Sprat

European Sardine Japanese Anchovy







Eggs & Yolksac Larvae: Biophysical drift modelling

Individual-based
Eggs & Larvae

“Passive
Particles”




Temperature-dependent development rates
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Egg Development Rates vs. Temperature
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Thermal Sensitivity of
Egg Development Rate (B value)
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Post-Hatch: Time until Larval Yolk Exhaustion (19 families, 44 species)
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Summary of eggs & yolksac larvae

e (Quite a lot of laboratory & field work accomplished on these stages
compared to later ones. Temperature effects & buoyancy well measured.
However, collecting more data is never a bad thing...

e Require better links between spawner demographics (female size, age,
nutritional condition) & the attributes of eggs and yolk sac larvae are needed
to clarify practical implications of maternal effects (e, riveiro et ai. 2004; castrol et al. 2009)
for the survival, development & transport dynamics.

e Importance of microalgae & larger components of microbial loop (e.g.,
heterotrophic protists) to first-feeding has been overlooked — despite seminal
recruitment work with northern anchovy in California Current (Lasker 1975).

European Sardine European Anchovy Sprat



Feeding Larvae, Post-larvae & Juveniles

Individual-based
Eggs & Larvae

“Passive
Particles”

Dynamic
Energy Budgets

Post Iarval to adult Habitat Utilization




Larval & post-larval growth dynamics
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Larval & post-larval growth dynamics

Growth Rate (mm d?) (0.44 0.96 0.85 0.74 0.94
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1) Selection for fast-growth is species-, system-
specific and does not occur every year — careful .
regarding mortality functions in models . ﬁ" il

2) Density-dependent top-down control of
zooplankton resources (all species)

3) Laboratory growth studies largely lacking in these

five species (otoliths, growth efficiency, etc.)

4) Optimal temperatures are species- and stage-
specific

Photo by M. Bernreuther
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Sprat lifestage growth potential vs temperature (Baltic Sea)
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Summary: Review of Ecophysiology &
Climate-driven Shifts in Small Pelagics

Climate change is expected to produce shifts in species dominance and
pole-ward migrations and establishment of species in new habitats
having physiologically, trophodynamic and physical / hydrodynamic
conditions allowing life cycle closure (Rijnsdorp et al. - Gijon conference - RECLAIM).

Direct causative effect of temperature on these shifts is a long-lasting
research topic recently receiving renewed attention in anchovy-sardine
shifts (e.g.Takasuka et al. 2008b). These and other authors suggest
species-specific “optimal growth temperature” are key.

However, there are multiple, synergistic / interacting factors having
indirect effects based on trophodynamics (e.g., bottom-up (ware and Thomson
2005), top-down (Frank et al. 2005), Wasp-waist (Bakun 2006)), physics (twatwa et al. 2005)
and/or fishing ,, Botop” effects (ruizet ai. 2009) to produce shifts (e.g.,
remember the Baltic sprat example...).

Future climate situations may / will produce novel combinations of factors
— thus ecosystem- and full life cycle modelling will be required to make
the best possible projections (single factor analyses break down). For
each life stage, we highlighted knowledge gaps & recommended
ecophysiological research that will aid in the development of these tools.

Lots of examples, little time...




Special thanks to my co-authors
Patricia Reglero
Motomitsu Takahashi
lgnacio Catalan

Thanks for your attention — questions?

(ask me later... let’s go have lunch)
E@

Mediterranean Institute

for Advanced Studies
Drivers of Change in the North Sea

Financial support for conference travel
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