Climate change impacts
('ocean acidification' and temperature) on the
metabolic scope and activity of nektonic organisms:
a crustacean example

Physical drivers of climate change

Climate warming:

projected to rise by 2 - 4.5 °C

Ocean acidification:

1900 ppm CO_2 by yr 2300 (pH ~ 7.4)

Hadley Centre for Climate Prediction and Research

Caldeira & Wickett (2003)

Rationale

"..likely that changes in sea-water chemistry would affect the internal physiological functioning of marine organisms"

Prof. John Raven

lonic and osmotic regulation:

The maintenance in a body fluid of concentrations of ions (ionic) and total particle concentration (osmotic) differing to that of the external medium

(Robertson 1949, 1960)

Acid-base balance:

Tight control of pH is required for proper physiological functioning

(Seibel & Walsh 2003)

Short-term effects: acid-base changes

Goals of OA research

Diagnostic:

Mechanisms

Prognostic:

Physiological and ecological consequences

- Changes in internal functioning?

- Growth rates?
- Behaviour?

Importance of Penaeids

Fish as food: per capita supply (average 2003-2005):

Japan = > 60 kg yr⁻¹ Western Europe = 5-10 kg yr⁻¹ UK = 2-5 kg yr⁻¹

Total catch = 3,416,533 (tonnes)
Penaeids (919,088) **i.e. 26% of total shrimp**

FAO. (2008)

Metapenaeus joyneri

Thermal range: 8 - 28 °C

Distribution: Pacific region from Korea and Japan to southern China

Model natant group: occupying various ecosystems:

(shallow-water coastal and open ocean).

Haemolymph pH and internal osmolality

Critical swimming behaviour assessment (U_{crit})

Oxygen consumption (Metabolic/aerobic scope)

Metabolic scope (MS) = difference between active and routine; "an animal's capacity for aerobic metabolism beyond that required biological maintenance" (Fry, 1947).

Metabolic/aerobic scope

Metabolic/aerobic scope

Oxygen consumption under elevated CO₂

Reviewed in Fabry et al. (2008). ICES J. Mar. Sci.

- 1. Melzner et al. (2009). Aquat. Toxicol.
- Munday et al. (2009). MEPS
- 3. This study

Moult Death Syndrome?

LONG TERM EFFECTS?

Can organisms evolve on contemporary timescales (within a few decades) in response to environmental change?

(Pearson and Palmer, 2000)

LONG-TERM EFFECTS?

Activity e.g. swimming ability

Maintenance (osmoregulation & acid-base balance)

LONG-TERM EFFECTS?

CONCLUSIONS

Effects of 1 % CO₂ exposure: - allow for determination of mechanistic effects

- relevant for CO₂ sequestrations leaks

Short-term:

- Change in internal physiological functioning (new steady state).

Long-term:

- Reduced swimming ability/aerobic scope: knock-on effects?
- Moult Death Syndrome? At risk during moulting process.

Predicted 'hotspots' of anthropogenic impact

LONG TERM CONSEQUENCES?

Can organisms evolve on contemporary timescales (within a few decades) in response to environmental change?

(Pearson and Palmer, 2000)