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Sardine are extensively fished in five of the world’s coastal regions, off Japan 

 
and in the California, Humboldt, Benguela, and Canary current systems.

Regimes of high abundance of sardine have alternated with regimes of high 

 
abundance of anchovy in each of the five regions of the world where 

 
there taxa co‐occur.

As the Japanese system, the stock fluctuations of sardine and anchovy are 

 
related to interdecadal North Pacific ocean/climate variability (Yasuda et 

 
al., 1999).
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Our challenge

• For the comprehensive understanding of the dynamics of pelagic 
ecosystem responses to climate variability, we need a model 
which enable to represent realistic prey condition, fish growth 
and fish distributions.

• To represent the fish distribution, we developed a horizontally 
two-dimensional sardine migration model.

• To understand the mechanism of fish species alternation 
associated with climate regime shifts, we developed a multi- 
trophic level ecosystem model including Japanese sardine by  
couplling physical (OGCM), biochemical-plankton (Lower 
Trophic Ecosystem Model) and fish models (sardine migration 
model).
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Boundary Forcing

Individual Based Model (IBM)

Migration model Bioenergetics model
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SeaWiFS -Chla

Toward max. growth
(Feeding Mig.)

Bioenergetics Model 
Time change in 

body weight 
[ ]

f

z

CAL
CALEFSRC

dtW
dW

⋅+++−=
⋅

)(

E: excretion rateC: feeding
R: respiration

S: specific dynamics action

F: egestion rate

advection

Dispersion

Feeding Migration: 
toward max. growth ratetoward max. growth rate

Spawning Migration: 
Artificial neural network(ANN) + Genetic algorism (GA)Artificial neural network(ANN) + Genetic algorism (GA)

Migration Model (Lagrangian Model)
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Feeding migration (ageFeeding migration (age--0)0) Okunishi et al. (2009)
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m) n) o) p)

q) r) s) t)

feeding migration (age 1+)feeding migration (age 1+)

general pattern of feeding migration are reproduced 
by the fitness (optimal growth) migration algorithm.

Okunishi et al. (2009)

Okunishi et al. (2009)



Artificial Neural Network
Spawning migration (ANN+GA)Spawning migration (ANN+GA)
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Father       : . . -15.4, 19.6, 1.8, -19.3, -24.2, 7.7, . . . .

crossover mutation

breakpoint

weight parametersReproduction

Size-dependent 
reproduction of 

survivors

Spatial model of 
Individual life cycle :
behavior, growth 

Initiate new 
cohort

Genetic Algorithm

Homing Fish

Rank individual

Temp. diff.

current

Day length

land

Huse & Giske (1998)

Okunishi et al. (2009)



Spawning migration (initial guess: first generation)Spawning migration (initial guess: first generation)

Okunishi et al. (accepted)

1. Neural Network 
parameters are tuned 
using training data with 
backward propagation 
method (BP).

2. Initial value Neural 
Network parameters 
were set to 30% white 
noise fluctuation from BP 
training data.

Neural Network parameters 
were optimized by iteration 
with genetic algorithm.



Schematic picture of
sardine migration

Kuroda (1991) 

Sardine migration (GA+ANN+BPSardine migration (GA+ANN+BP））

Realistic migration and 
growth are reproduced.

Okunishi et al. (accepted)

model
obs.



Weights  & Catches of the Japanese sardine

High Stocks => Expanding feeding ground

High Stocks =>  Decreasing weight 
(small size) 

Wada & Kashiwai (1991) 

These seem to be the effects of density-dependence.

1975 1980 1985 1990 1995 2000 2005
0

50

100

150

W
e
ig
h
t 
(g
) A ge 0

 Age 1
 Age 2
 Age 3
 Age 4
 Age 5+

0

50

100

150

200

250

300

 

C
at
c
h
  
(t
o
n
*
1
0
5̂
)

 C atch

Q1: DensityQ1: Density--dependence effect?dependence effect?

(Fisheries Agency, 2004)



Climate Model MIROC 3.2Climate Model MIROC 3.2

multimulti--trophictrophic--level ecosystem model of Japanese sardinelevel ecosystem model of Japanese sardine

1/4 x 1/6
Climatological Physical fields
SST, V, Kz, etc.

LTL Ecosystem ModelLTL Ecosystem Model
NEMURONEMURO

1/4 x 1/6
prey plankton density

Sardine Migration ModelSardine Migration Model
(Okunishi et al., 2009)(Okunishi et al., 2009)

growth: NEMURO.FISH
migration: fitness+GA
population: size dependent 
mortality

2-way



high low
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2-way low stock 2-way high stock
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Okunishi et al. (in prep.)

Model results 
explicitly support 
the density 
dependent effect 
hypothesis.

stock increase

prey decrease

expansion of 
habitat area

Geographical Distributions of Adult fish (Age = 2+)
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In early autumn, Age 0 fish has slower growth rate under the scenario of  
high standing stock because forage density becomes significantly low.

Difference in age-1 weight between high & low stock experiments
is 4.9g.
This difference is similar order with observation (4.0 g).
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Density dependent effect on fish weightDensity dependent effect on fish weight



Geographical Distributions Anomaly of Forage density (PL + ZS + ZL)

•Forage density is lower by 10 to 20 % in the Mixed water and Oyashio regions in the high 
stock simulation than that in the low stock simulation due to high grazing pressure of adult 
sardine. 
•The deceleration of growth at Age 0 fish becomes remarkable in the Mixed Water and 
Oyashio regions in early autumn.

S3 (High stocks) - S2(Low stocks)

%

Age 0

Age 2+

September

September

September

Okunishi et al. (in prep.)

Density dependent effect on prey densityDensity dependent effect on prey density



• The model reasonably reproduced fish weight decrease by the 
effect of density-dependent.

• The model reproduced the expansion of sardine distribution by 
the effect of density-dependent. 

• Model results suggest that the deceleration of growth of sardine 
starts at the juvenile stage in the mixed water and Oyashio 
regions.

• The effect of density-dependence among trophic levels and fish 
seems to be one of the most important factors which determine 
the geographical distribution of adult sardine and growth of 
young sardine.

Summary for density dependent effectSummary for density dependent effect
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Autumn Autumn 

SummerSummer

Observation data shows fish (Age 0) 
distribute in the subarctic waters of 
SST 12-14 degC in autumn.

Q2: Predator's effect ?Q2: Predator's effect ?

The model reasonably reproduced 
realistic sardine migration. However,  

The model simulated migration is limited 
south of 42N.

Hypothesis
Sardine makes feeding 
migration with escaping 
from predators such as 
skipjack tuna.
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Skipjack frequency as a function of 

 
SST in May  in the around Japan from  

 
catch data.

We assumed predation risk has the 

 
same type function of SST.

Case A  : fitness = Growth Rate * (1‐Predation Risk) 

Case B  :

 
fitness =Growth Rate

Feeding migration : toward high fitness regionsFeeding migration : toward high fitness regions
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modeling the predation risk from skipjack tunamodeling the predation risk from skipjack tuna



October (model sardine)October (model sardine)

including escaping algorithm without escaping algorithm

秋季秋季

夏季夏季

Case A Case B

低密度 高密度

By including effects of 
 predators, the model 

 reproduced northern 
 migration.

predator's effect on migrationpredator's effect on migration



Summary for predator's effectSummary for predator's effect

• The model reasonably reproduced northern migration of 
Japanese sardine when escaping behavior from a predator is 
considered.

• (Figure is not shown) The northern migrated sardine showed 
higher wet weight than ones distributed in the south.

• (Figure is not shown) The growth difference becomes 
apparently at about 80-days old.

• It seems that the advection determine the larval position and the 
high growth larvae success to the northern migrations.



Model results suggest the possibility that

1) The density dependent effect may be acting for growth 
and distributions of Japanese sardine and prey plankton 
density.

2) Predators existence may affect migration routes of 
Japanese sardine and hence their growth.

3) (Figures were not shown) Japanese sardine may shift the 
main spawning grounds to the north-eastward and migrate 
further north under future climate.

Summary
We developed a multi-trophic level ecosystem model 

including Japanese sardine by coupling to a fish 
bioenergetics model to a lower trophic level. 



Disclaimers

1) Another migration algorithm (e.g. kinesis) may be 
appropriate for sardine.

2) Bioenergetics parameters must be improved.

3) Species interactions must be take into account.

4) These improvements may totally change the results of this 
study.

Disclaimer
However, we don't know actual mechanism controlling 
sardine migration. Moreover, it is difficult to evaluate 
the modeled migration since there is few tag release 
data.

Please see Okunishi-san's poster D2-6277



For questionsFor questions



Q3. Response to future climate changeQ3. Response to future climate change

High resolution climate Model: MIROC
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80y

Forcing at the year 1900 

MIROC 3.2 (The CCSR/NIES/FRCGC Coupled Ocean-Atmosphere GCM) 
Horizontal Resolution (Ocean Part): 1/4×1/6

Experimental Setting

CO2 x 2

Analysis Period: Control-Run (46-55y), CO2 -Run (76-85y)

Predicted Physical Fields for off-line Eco. Model
from Sakamoto et al., (2005) GRL.

Spawning regions

Area-1
Area-2

Area-3
Area-4

Simulations by using 10 year 
physical fields
Period : 

Larvae stage – Adult stage in    
summer, Age 1 (22 months)  

Spawning condition
SST: 15- 21°C
Dec – Apr



Jan Feb Mar

Projected Impact on small-zooplankton 
(CO2 – Control)

Hashioka et al. (2010)
Okunishi et al. (submitted)



Spawning regions
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Fig. Proportion of hatched numbers in the four spawning regions

CO2 -RUN
Okunishi et al. (submitted)

Spawning groundsSpawning grounds

Projection
Spawning grounds shifts to 
north-eastward.
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Change in Geographical Distribution

Age 1

Age 1

Okunishi et al. (submitted)



Model results suggest the possibility that

1) The current main population of Japanese sardine in Tosa 
Bay may be face collapse under the global warming 
condition.

2) However, Japanese sardine would shift spawning ground 
toward north regions, and succeed in recruitment.

3) Geographical distributions of Japanese sardine can be  
altered directly through climate-induced changes in 
temperature variations. But, the impact on the change in 
geographical distribution would be not large.

Summary
We developed a multi-trophic level ecosystem model 

including Japanese sardine by coupling to a fish 
bioenergetics model to a lower trophic level. 

We demonstrated possible impacts of global warming 
on migration pattern and growth of Japanese sardine.


	Slide Number 1
	Background
	Our challenge
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Summary
	Disclaimer
	Slide Number 22
	Slide Number 23
	Projected Impact on small-zooplankton�(CO2 – Control)
	Slide Number 25
	Change in Geographical Distribution
	Summary



