

Pacific Salmon Commercial Catch

Peaked in 1930-40s and 1990-2000s

Regional catches seem to be synchronized

Questions

- How does climate change affect chum and pink salmon differently in various regions?
- Does recent climate change favor chum and pink salmon?

Index

Abundance (catch) change per generation

$$ln(Ct+T/Ct) \approx lnRo$$

Analysis: Structural Equation Modeling

Backward elimination of paths by BIC

Climate factors: Temp., Precipitation, SST, PDO, ALPI

Latent variable: Decadal climate change extracted from ALPI and PDO

Abundance changes correlated each other, but did not with climate indices

What climate factors control salmon?

Stock	Climate factor	Path coeff.
Japan pink	▲ Winter Temperature	0.174**
Russia chum	Winter Precipitation	-0.035**
Russia pink	Summer Temperature	-0.236**
BC & NW chum	Spring Precipitation	-0.014**
	Winter Temperature	0.136**
	Spring SST	-0.360**
BC & NW pink	Spring Precipitation	-0.015**
SE Alaska chum	Spring SST	0.484***
	Summer SST	-0.280*
	Summer Precipitation	0.013**
SE Alaska pink	Summer Precipitation	0.015**
W&C Alaska pink	Summer SST	0.327***

Summary

- Chum&pink catch peaks: 1930-40, 1990-2000s
- Climate indices: NOT~ abundance changes
- Climate factor controlling salmon abundance:
 Different among regions
- Some climate factors correlated among regions

Conclusion

Response of chum and pink salmon stocks to global climate change can be different among regions.

