Variability of the North Equatorial Current (NEC) and its Implications on Japanese Eel Larval Transport

Huijie Xue Ango Chen-Tien Hsu, Fei Chai School of Marine Sciences University of Maine

3rd Symposium on Effects of Climate Change on World's Oceans Santos, Brazil, 3/24/2015

Japanese Eel - Life Cycle and Habitats

- Spawning occurs during new moons between Apr and Aug
- Larvae reach Taiwan in 4 6 months (Tsukamoto 1992, 2006, 2009)

Glass Eel Catch in Taiwan

Objectives:

Understand oceanic effects (NEC, SF, etc.) on the variability of the glass eel recruitment to Taiwan

Approaches:

Individual Based Model simulations (passive, DVM, bioenergetics)

Variability of the NEC

4

IBM Simulations

- For 20 years (1993 2012), 100 particles were released in each cell every month between Apr. Aug., fixed at 6 depths (50, 100, ..., 300 m), and tracked for 8 months
- Another set of experiments with DVM between 50-250

1/8° Pacific ROMS

Passive Particles

Annual composite of paths

- Particles tended to travel through a specific latitudinal range to reach Taiwan (warm colors).
- In years of more particles reaching Taiwan, particles were transported across the NEC region sooner, implying the importance of NEC to the success of particle transport.

"Success" Particle Transport

Percentage of particles that reach Taiwan within 8 months

- Jul and Aug have higher success rates.
- In 1995 northern end of the releases have higher success rates.
- Patterns are highly coherent in the vertical such that the annual mean success rate for particles released at 200m represents well that of the vertical mean.

40

"Success" Particle Transport

- Northern end of the releases still have slightly higher success rates.
- Patterns are again coherent in the vertical.
- The annual mean success rate is highly correlated with the zonal speed averaged in the area: (13.6 – 17N, 125 – 143E).

Zonally Averaged Westward Velocity

Westward (NEC: positive) velocity averaged between 125 and 143°E.

- NEC is stronger (weaker) and shifts northward (southward) slightly during El Niño (La Niña) years.
- However, the averaged zonal velocity in the key latitudinal band (12.5 17°N) changes little between years.

Zonally Averaged Westward Velocity

- NEC is stronger especially for the northern core during the high success particle transport (PT) years.
- Moreover, the zonal velocity in the latitudinal band (12.5 17°N) changes significantly between the higher success years (93, 95, 96, 97, 01, and 02) and low success years (94, 00, 04, and 12).

Salinity Front

Salinity Front & Particle Transport

Diel Vertical Migration

DVM doesn't influence the success rate of particle transport!

Conclusions

- Particle transport is rather coherent in the vertical such that those released at 200m can represent the mean of all particles in the top 300m.
- 6-month mean (Jun-Dec) zonally averaged NEC speed in the northern 75% of the spawning latitude is a good indicator for the percentage of particles successfully transported to Taiwan.
- Considering advection alone, spawning at the salinity front doesn't seem to be an effective strategy.
- Considering movement alone, DVM doesn't influence the annual mean success rate of particle transport.