

Large Marine Environement Biogeochemical evolution whithin the next century

<u>Julien Palmiéri;</u> Andrew Yool, Katya Popova

Large Marine Ecosystems (LME) – Presentation

- 65 large regions.
- ~200,000 km² from coastal to outer boundary margin.
- Characterized by 1 bathymetry, 2 hydrography, 3 productivity , 4 – trophically dependent population

Large Marine Ecosystems (LME) – Presentation

- Developed by NOAA for conservative purpose
- 95% of fisheries;
- Objective : enabling Ecosystem-based Management

Modelling approach : NEMO-MEDUSA

- "Intermediate complexity" plankton ecosystem model.
- Variable C : N in exported organic matter.

Two simulations available – 2 Ocean grid resolutions.

Does the higher resolution improves the LMEs biogeochemistry ??

LME Ecological evolution with Climate change ??

Finer grid resolution improve the dynamic...

Current – Obs – AVISO

... But, is the biogeochemistry also improved with the grid resolution in the LME ??

Definition of an Improvement Index (ID)

Are ORCA025 results more realistic than ORCA1's ??

Definition of an Improvement Index (ID)

Are ORCA025 results more realistic than ORCA1's ??

Definition of an Improvement Index (ID)

Are ORCA025 results more realistic than ORCA1's ??

Biogeochemistry in LME is closer to Obs in ORCA205

Biogeochemistry in LME is closer to Obs in ORCA205

Biogeochemistry in LME is closer to Obs in ORCA205

• Biogeochemistry is closest to Obs at finer resolution

Continue with ORCA025

Evaluation of NEMO-MEDUSA (ORCA025)

4

1

1.5

6

Physical changes between 2000 and 2090 decades.

- SSS change following E-P
- SST increase everywhere up to 6°C
- Decrease of MLD Deep Water Formation zone

Biogeoch. changes between 2000 and 2090 decades.

δChl - - 2090-2000 (μg-C l⁻¹)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

- Decrease in DIN up to 65% in N-Atl
- Chl gen^{al} decrease except around S-Ocean
- Increase of Arctic subsurface PP Decrease in N-Atl ~50%

Changes in time of seasonal Maximum

- Maximum Chl occurs 1-2 month earlier in N-Hemisphere
- No change to 1 month later in S-Hemisphere

Conclusion

- Confirmed that increased resolution improve LME biogeochemistry results.
- MEDUSA's results in LME are realistic.
 But slight nutrient underestimates in low-medium latitudes
 - slight nutrient overestimates in high latitudes
 - Chl underestimates everywhere.
- Evolution within Climate change shows
 - General surface DIN decrease in all LME (~ 50%)
 - idem with surface Chl (up to 50%) except in Antarctic regions
 - subsurface PP increase in Arctic regions
 - Max Chl accurs 1 to 2 month earlier in N-Hemisphere.

iii Obrigado !!!

julien.palmieri@noc.soton.ac.uk