Effective CO₂ utilization in response to increasing CO₂ levels in natural phytoplankton assemblages from the coastal Bay of Bengal, India

Presented by

Aziz ur Rahman Shaik

&

Haimanti Biswas, Debasmita Bandyopadhyay

CSIR-National Institute of Oceanography, Regional Centre, Visakhapatnam, India

3rd International symposium on Climate change 23rd-27th March 2015, Brazil.

- □ The majority of DIC in the modern ocean is in the form of HCO₃⁻ (≈90%) and dissolved CO₂ is < 1%
- □ Rubisco fixes only dissolved CO₂ and the half-saturation concentration (CO₂ aq) of diatom's Rubisco is much higher
- ☐ Marine phytoplankton production can be limited by CO₂ concentrations (Riebesell et al., 1993)

To increase CO_2 level at the site of carboxylation, HCO_3 ions are taken up actively (Reinfelder 2011) and converted to CO_2 by the metaloenzyme enzyme Carbonic Anhydrase (CA)

Study area:

Bay of Bengal (BoB)

- •A low productive part of the North Indian Ocean
- •Often possesses low CO₂ levels in its surface waters
- Diatoms dominate the phytoplankton communities
- •Receives huge amount of freshwater discharge and nutrients by the major monsoon fed rivers in the Indian east coast

Objectives:

 Whether phytoplankton community in the coastal Bay of Bengal show any response when external CO₂ levels are increased?

 Whether low external CO₂ concentrations limit their growth?

 How phytoplankton community overcome CO₂ limitations in this subtropical sea?

Experimental:

Natural coastal water

200µm mesh

4-8L polycarbonate bottles (Nalgene)

Measuring Initial alkalinity, DIC, Nutrients, salinity

Filtered with GF/F and 0.2µM Polycarbonate filters

Manipulating the targeted CO₂ levels (105 -1500μatm) CO2 was manipulated following the method of Riebesell et al 2010 (Best practice in Ocean acidification; NaHCO₃ addition followed by Acid addition)

Incubation under natural day and night (12:12hrs) in variable time scale (24hrs to 120 hrs) and light

Parameters measured.....

- 1. Carbon chemistry parameters:
 - •Dissolved Inorganic Carbon (DIC)- Coulometer acidification Module (CM5 130), (Dickson et al 1992).
 - •Total Alkalinity- 794 Basic Titrino from Metrohm, following (Dickson 2003).
 - pH- Titrino from Metrohm, following (Dickson 2003).
- 2. Oxygenic photosynthesis by dissolved oxygen method (Winkler et al 1888).
- 3. Chlorophyll by fluorometer and HPLC
- 4. POC/PON by elemental analyzer (Sharp et al 1975).
- 5. δ^{13} C and δ^{15} N by Isotopic Ratio Mass Spectrometry following δ V+ method.
- 6. Total protein by spectrophotometer method following (Lowry et al 1951).
- 7. Nutrients by using Spectrophotometer/Autoanalyzer (Strickland and Parsons, 1971).

Carbon chemistry parameters from some experiments

pCO	2 Alkal	inity	DIC		`
(µatr	n) (μmol	Kg-1)	(µmol Kg-1)	pН	
130) 21	31	1660	8.42	
280	21	35	1817	8.18	
300) 21	59	1852	8.15	
380	21	60	1894	8.13	
550	21	90	1982	7.95	
110	0 21	85	2088	7.67	
					J

Salinity varied from 29 -31psu, DIN =13.12±7.32 μ M;DIP =1.15 μ M ±0.46 μ M;Silicate 14.16 ±8.69 μ M

Results: 48 hours incubation

- 48% net increase in POC
- •≈30% increased POC based growth rate
- •Depleted $\delta^{13}C_{POC}(\%)$ values: higher diffusive influx of CO_2 inside the cells

DIN: 19.94±2.24; SiO4: 16.08±0.8; DIP: 6.81±0.06

► An increase of pCO₂ from 390 to 800µatm 34% increase in POC based growth rate

- From an enhancement of 170µatm to 390µatm increase in pCO₂ almost 50% growth enhancement
- ▶ Depleted values of δ^{13} C $_{POC}$ ‰ under elevated CO $_2$ levels clearly suggests dissolved CO $_2$ uptake
- Total protein content increased linearly with increasing CO₂ levels

Carbon Concentration Mechanisms (CCMs)

A generalized model for the marine phytoplankton CCM.

Effects of Zn addition:24 hours incubation

- •Increased supply of CO₂ and Zn revealed similar results with different magnitude
- Presumably Zn containing carbnic anhydrase is involved in CCM operation
- •Hence Zn treated samples showed higher biomass production relative to the control

Conclusions

- ☐ Our results clearly indicated that the coastal phytoplankton benefits from the increasing CO₂ levels
- Under low CO₂ conditions the diatom dominated communities from BOB possibly perform CCM and can be down regulated upon increasing levels of CO₂
- ☐ Thus in future any increase in CO₂ levels may potentially impact growth and biomass production in the phytoplankton communities from this bay.
- Hence, these features may exert a huge biogeochemical influence on carbon fixation and its metabolism in marine phytoplankton from this basin.

Long term experiment is required to be conducted with a preacclimation time to get a better picture of their responses Funct. Plant Biol., 2002, 29, 335-347

Ecological implications of microalgal and cyanobacterial CO₂ concentrating mechanisms, and their regulation

John Beardall^A and Mario Giordano^B

Plant Ecology & Diversity Vol. 2, No. 2, June 2009, 191–205

Living in a high CO₂ world: impacts of global climate change on marine phytoplankton

John Beardalla*, Slobodanka Stojkovica,b and Stuart Larsena

Acknowledgement

I express my sincere gratitude to

- ☐ My PhD Guide Dr. Haimanti Biswas and my colleague Ms. Debasmita bandyopadhyay for their active contribution to this research.
- □IAEA/OA-ICC and PICES for their generous financial support.
- □Director and Scientist-In-Charge NIO for support and cooperation and Mr.
- NPC Reddy and Ch. Jawahar Kumar, NIO for partial travel support.
- ☐ Conveners of PICES for providing me this opportunity to deliver this talk.