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Biologists vs Chemists ——

Phytoplankton is responsible of half of the global organic matter production
(Berger et al., 1989; Falkowski and Woodhead, 1992; Field et al., 1998)

The oceanic cycle of POPs is influenced by planktonic food webs
(Dachs et al., 2002; Lohmann et al., 2007; Nizzetto et al., 2014)



POPs into nature ——



POPs into nature

According to Flick’s law, pollution decreases with increasing
distance from the source (“dilution effect”)

letters to nature
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Persistent, semi-volatile organochlorine compounds, induding
toxic industrial pollutants and agricultural pesticides, are found
everywhere on Earth, including in pristine polar and near-polar
locations'™. Higher than expected occurrences of these com

pounds in remote regions are the result of long-range transport
in the atmosphere, precipitation and ‘cold condensation’—the
progressive volatilization in relatively warm locations and sub

sequent condensation in cooler environments™ which leads to
enhanced concentrations at high latitudes. The upper reaches of
high mountains are similar to high-latitude regions in that they
too are characterized by relatively low average temperatures, but
the accumulation of organochlorine compounds as a function of
altitude has not yet been documented. Here we report organo-
chlorine deposition in snow from mountain ranges in western
Canada that show a 10- to 100-fold increase between 770 and
3,100m altitude. In the case of less-volatile compounds, the
observed increase by a factor of 10 is simply due to a 10-fold
increase in snowfall over the altitude range of the sampling sites.
In the case of the more-volatile organochlorines, cold-condensa-
tion effects further enhance the concentration of these com-
pounds with increasing altitnde. These findings demonstrate
that temperate-zone mountain regions, which tend to receive

Higher POPs concentrations
with decreasing temperature

and elevation above sea level
(Blais et al., 1998; Grimalt et al., 2001,
2004; Meijer et al., 2009)

The “distillation effect”

Careful where you drink, the highest mountainous lakes
are more contaminated than lakes of lower altitudes!!



POPs into nature ——

Dalla Valle et al., 2005

80% of pollutants detected in the Arctic come from countries other than Canada
(Inuit Circumpolar Conference and the Inuit Tapirisat of Canada)



Temperate vs polar seawaters ——

Temperate seawaters:
Oligotrophic waters dominated by picocyanobacteria (<2um)

Polar Oceans: Eutrophic waters dominated
by flagellates and diatoms (>10 um)



Study area ——

Walit, what about the POPs?



Our “San Francisco” ——

100 L

=

Filtration with GFF filters (Whathman)
Concentration of the hydrophobic organic
pollutants through a XAD-2 adsorbent
Clean up of the extract on a alumina 3%
deactivated column

.

Polar OP (POPs with alcohol, ketone

0 @ i and acid functional groups)

Non-polar OP (PCBs, PAHs, lindane, etc.)

More details about the method:

*Dachs and Bayona, 1997; Gioia et al., 2008; Nizzetto et al., 2008; Dachs and Bayona, 1997



Procedure ——
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Positive values = volatilization fluxes
Negative values = deposition fluxes



BCF: Bioconcentration factor
F..: Alr-water flux
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Volume [ LCsy ((WCeontro) |
(um”) |Non Polar] _Polar
(Mediterranean Synechococcus 9.0E-01 [ 361 (+443)f 230 (= 123?
Sea Small eukaryotes  2.1E+01 * *

* Nanoplankton 1.3E+02 5 5
Atlantic Prochlorococcus 1.0E-01 | 137 (=37)§ 149 (=84)
Ocean Synechococcus 9.0E-01 | 177 (=23)§ 201 (+77)

\ Picoeukaryotes 82E+00| 243 (+2) § 247 (+80))
Weddell Small flagellates ~ 2.5E+03 | 206 (+55) | 178 (+39)\
Sea Small diatoms ~ 2.2E+03 | 245 (53) | 273 (= 97)

Medium diatoms 72E+03 | 164 (+52)f 168 (+37)
Large diatoms 3.5E+05 * *
5elliNgSNAUSen  Small flagellates  4.3E+03 | 115 (=20)§ 134 (= 24)l
Sea Small diatoms 2.6E+03 | 121 (=13) 153 (=73)
Medium flagellates 2.1E+04| 132 (+5) § 101 (+26)
Medium diatoms 92E+03| 115 31§ 130 (=39)
\_ Large diatoms 1.9E+05 | 141 (+26) A 102 (= 22))

LC 10 (C/ Ccontrol)

Non Polar
55 67)

Polar
35 19)

184 (=415) 88 (£55)
386 (£953) 131 (& 149)

21 (z6) 23 (£13)
274 31 &1
37x0) 3812
31 (+8) 27 (+6)
37 (9 42 (£15)
25 (+8) 26 (+6)
167 (=884) 117 (+398)
18 (£3) 20 (+4)
18 (x2) 23 (=x11)
20 (£ 1) 15 (+4)
18 £5) 20 (x6)
21 (+4) 16 (+3)
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Conclusions

» Not significant differences between the polar and the non polar organic
pollutants’ impacts.

» At concentrations below those causing significant decreases in the
phytoplankton populations, cell death was already induced.

* In each oceanic region, cell size determined the sensitivity to POPs.

« Comparing oceanic regions, polar communities pointed to be less
adapted to pollution.

» POPs present in seawater are impacting phytoplankton
communities.




Future directions ——

Planetary Boundaries:
Exploring the safe operating space for humanity

Johan Rockstrom™", Will Steffen'. Kevin Noone'*, Asa Persson'?, F. Stuart Chapin, 1P,
Eric F. Lambin®, Timothy M. Lenton’, Marten Scheffer®, Carl Folke'®, Hans Joachim _- ;

Schellnhuber'®", Bjérn Nykvist'?, Cynthia A. de Wit*, Terry Hughes'?, Sander van der Earth-system process Parameters Eouln ds:; i‘;{.ﬁ;l Pre ,::;E'; trial
Leeuw’, Henning Rodhe®, Sverker Sﬁrlinl’”, Peter K. Snydcrm, Robert Costa.nzal’”, Uno
Svedin', Malin Falkenmark'*®, Louise Karlbergl’z, Robert W. Corell", Victoria J. Fabry”,

James Hansen’', Bzrﬁian Walker"* Diana Liverman®, Katherine Richardson™, Paul Crutzen®, e &ﬂx&?&lﬁ@a pl?:;ﬁ:ii = eh =t
Jonathan A. Foley by volume)
{ii} Change in radiative forcing 1 156 1]
(watts per meter sgaurad)
Rate of biodiversity loss Extinction rate (number of species 10 =100 0.1-1
per million species per year)
Mitrogen cycle (part Amount of N, removed form 35 121 1]
of a boundary with the the atmosphere for human use
phosphorous cycle) (millions of tonnes per year)
Phosphorous cycle (part Quantity of P flowing into the oceans 11 8.5-9.5 -1
of a boundary with the {millions of tannes per year)
Mitrogean cycls)
Stratospheric ozone Concentration of ozone (Dobson 276 283 290
depletion unit)
Ocean acidification Global mean saturation state of 2.75 290 3.44

aragonite in surface sea water

Global freshwater use Consumption of freshwater 4,000 2,600 415
by humans (km? per year)

Change in land use Percentage of global land cowver 15 1.7 Low
converted to cropland

To be determined

Interfere with e

Chemical pollution For example, amount emitted to, or

t h I concentration in, the global
e O a envirenmeant of persistent organic
g pollutants, plastics, endocrine
disrupters, heavy metals and nuclear
carbon Cycle :

the atmosphere, on a regional basis

To be determined

waste; or their effects on the functioning
of ecosystams and the Earth System.

Baundasies for proces:
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The trouble with our times
IS that the future i1s no
longer what it used to be
(Paul Valery)

Thanks for your attention! Obrigado!
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