

A quantitative metric to identify critical elements within seafood supply networks under a changing climate

Éva Plagányi

Ingrid van Putten, Alistair Hobday, Stewart Frusher, Gretta Pecl,

Olivier Thébaud, James Innes, Lilly Lim-Camacho, Ana Norman-López, Rodrigo H. Bustamante , Anna Farmery, Aysha Fleming, Bridget Green, Eriko Hoshino, Sarah Jennings, Sean Pascoe, Peggy Schrobback, Linda Thomas

OCEANS & ATMOSPHERE FLAGSHIP www.csiro.au

3rd International Symposium on the Effects of Climate Change on the World's Oceans, Brazil 2015

Australian Government Fisheries Research and Development Corporation

Climate adaptation down under

SURF (Supportive Role To Fishery ecosystems)

Need methods for identifying "key" prey species such as forage fish, upon which upper trophic level predators depend

Weights food web connectance by the importance of trophic connections, so that higher scores indicate a greater potential for indirect food web effects of forage fish fisheries

When the SURFS up, Forage fish are key

What is a supply chain?

The people, businesses, and organisations involved in getting fish from those that catch it to the consumer

A system of organizations, people, activities, information, and resources involved in moving a product or service from supplier to customer

Climate adaptation in marine fisheries

Need to make supply chains climate-smart in part by analysing their connectivity and identifying which links or nodes may be fragile (Levermann 2014)

Maintain market and be resilient to (climate change driven) change

Need highly efficient and effective supply chains

Future climate changes are likely to be ongoing and uncertain, requiring whole supply chains to be more flexible and adaptable as shocks and challenges become more frequent and difficult

Supply chains and climate change

Growth through reducing vulnerability to shocks

Minimising vulnerability and instability in the supply chain

by identifying critical elements and internal vulnerabilities that can be addressed by industry or government actions

Being prepared Opportunities and challenges

24

10

Marine NARP project funded by FRDC / NCCARF / DCCEE

Supply chains and climate change

Where are there vulnerable elements and links in the supply chain?

How does the resilience of this supply chain compare to another one?

A new approach, based on network analysis Increasing resilience to climate change might involve diversifying the network

Fish receivers

(drop off points)

Interim

storage

Fishers

Why focus on fisheries supply chains

Seafood is BIG Business Most commonly traded food commodity globally

In 2011-12, Australian seafood exports to China and Hong Kong were \$465 million

Globally trade is worth over US\$100billion

Many fisheries have a long and complex supply chain handling delicate products with many opportunities for things to go wrong.

Developing a sustainable export platform for Australian seafood to China

What do the supply chains for seafood look like?

Southern Rock lobster (SRL)

We looked at 6 supply chains

Southern Rock Lobster

Western Rock Lobster

Tropical Rock Lobster

Wild caught prawns

Commonwealth trawl

Sydney rock oyster

Tasmanian Southern Rock Lobster (SRL)

24 January 2013

Supply chains

can be represented in similar way to

Social networks

& Food webs

Identify critical elements in the supply chain

CSIRC

Tasmanian Southern Rock Lobster (SRL)

24 January 2013

Identify critical elements in each supply chain

Relative critical element score

Banana Prawn (Northern Prawn Fishery) with colour coding to highlight key elements identified using the Supply Chain Index (SCI)

Critical elements in different places

Information can inform discussion about building climate resilience to shocks and long-term change and can be tested with scenarios

Learning from other fisheries supply chains (comparisons)					
Southern Rock Lobster					
Western Rock Lobster					
Tropical Rock Lobster					
Wild caught prawns					
Commonwealth trawl					
Sydney rock oyster					
Australian aquaculture prawn					

# of elements	# of links	SCI	Demand / supply side	1 st key element
17	22	0.092	supply	Hobart airport
22	33	0.048	demand	Chinese consumer
15	16	0.084	demand	Chinese importer
15	28	0.023	demand	Super markets
14	18	0.110	supply	Co-op business
13	19	0.140	supply	On farm storage
10	16	0.069	demand	Domestic consumer

Summary

Identify and address vulnerable elements and links in supply chains

Compare across seafood supply chains to identify synergies and improve demand and supply side networks

Increasing resilience to climate change might involve diversifying the network

Increasing value from existing production – value adding, or focussing on the more profitable markets or products, and reducing waste along the supply chain

Economic growth achieved through reducing vulnerability to shocks

PLOS ONE

A Quantitative Metric to Identify Critical Elements within Seafood Supply Networks

Éva E. Plagányi¹*, Ingrid van Putten², Olivier Thébaud¹[#], Alistair J. Hobday², James Innes¹, Lilly Lim-Camacho¹, Ana Norman-López¹, Rodrigo H. Bustamante¹, Anna Farmery³, Aysha Fleming², Stewart Frusher³, Bridget Green³, Eriko Hoshino³, Sarah Jennings³, Gretta Pecl³, Sean Pascoe¹, Peggy Schrobback⁴, Linda Thomas²

Oceans and Atmosphere Flagship Dr Éva Pláganyi CSIRO, Brisbane

t +61 7 3833 5955e eva.plaganyi-lloyd@csiro.auw www.csiro.au

WEALTH FROM OCEANS FLAGSHIP www.csiro.au

