Exploring marine phytoplankton biogeography through theory and models: applications to climate change studies

Stephanie Dutkiewicz

Massachusetts Institute of Technology

Ben Ward (U Bristol), Jeff Morris (U Alabama), Jeff Scott (MIT), Mick Follows (MIT), Sonya Dyrman (Columbia U), Ilana Berman-Frank (Bar-Ilan U)

OUTLINE

- Trait based approach to modeling phytoplankton
- Phytoplankton response to climate change
 - diazotrophs
 - ocean acidification
- Final thoughts (with naïve ideas on application to HABs)

Traits: key physiological characteristics

e.g. size, resource-acquisition abilities, pigments, predator susceptibility

For reviews see: Litchman et al, Ann Rev Ecol Evol Syst, 2008

Follows and Dutkiewicz, Ann Rev Mar Sci, 2011

Traits: key physiological characteristics

e.g. size, resource-acquisition abilities, pigments, predator susceptibility

Trade-offs: some traits come at a cost

For reviews see: Litchman et al, Ann Rev Ecol Evol Syst, 2008 Follows and Dutkiewicz, Ann Rev Mar Sci, 2011

Start with number of phytoplankton types with

Assign them combination of traits

(e.g size, nutrientacquisition ability, optimum light, optimum temperature)

Place in 3D physical, biogeochemical, and grazer environmental

Assign them combination of traits

(e.g size, nutrientacquisition ability, optimum light, optimum temperature)

Place in 3D physical, biogeochemical, and grazer environmental

Assign them combination of traits

(e.g size, nutrientacquisition ability, optimum light, optimum temperature)

Assign them combination of traits

(e.g size, nutrientacquisition ability, optimum light, optimum temperature)

- Environment selects which combinations co-exist
- right types in right place, and exclude all non-viable combinations of traits

Traits: key physiological characteristics

e.g. size, resource-acquisition abilities, pigments, predator susceptibility

Trade-offs: some traits come at a cost

Advantages of approach: - reductionist

- reduced amount of parameters
- environment "selects"
- allows communities to "self-assemble"

see e.g. Follows et al, Science, 2007; Dutkiewicz et al, GBC, 2009; 2012;

Monteiro et al, GBC, 2010; Ward et al., L+O, 2011

1. Identify key traits and trade-offs

2. Understand the specific environmental control that selects for those traits

OUTLINE

- Trait based approach to modeling phytoplankton
- Phytoplankton response to climate change
 - diazotrophs
 - ocean acidification
- Final thoughts (with naïve ideas on application to HABS)

1. What are the key traits and trade-offs of diazotrophs?

Trait: diazotrophs can fix nitrogen (i.e. never nitrogen limited)

Trade-off: grow slower than other phytoplankton

non-diazotrophs

diazotrophs

1. What are the key traits and trade-offs of diazotrophs?

not nitrogen limit, lower growth rate than non-diazotrophs

model diazotroph biomass

observed diazotroph biomass

Luo et al, ESDD 2011

mg C/m3

0.01 1 100

- 1. What are the key traits and trade-offs of diazotrophs?

 not nitrogen limit, but lower growth rate than non-diazotrophs
- 2. What are the environmental control of diazotroph biogeography?

model diazotroph biomass

temperature, light, iron???

see e.g. Sohm et al, Ann Rev. Micro, 2011 Monteiro et al, GBC, 2011

- 1. What are the key traits and trade-offs of diazotrophs?
 - not nitrogen limit, but lower growth rate than non-diazotrophs
- 2. What are the environmental control of diazotroph biogeography?

Resource Supply Ratio Theory

$$\begin{split} \frac{dB}{dt} &= \mu_B \gamma_B B - m_B B \\ \frac{dD}{dt} &= \mu_D \gamma_D D - m_D D \\ \frac{dN}{dt} &= -\mu_B \gamma_B B + m_D D + I_N - O_N \\ \frac{dP}{dt} &= -\mu_B \gamma_B R_{B_{P:N}} B - \mu_D \gamma_D R_{D_{P:N}} D + I_P - O_P \\ \frac{dFe}{dt} &= -\mu_B \gamma_B R_{B_{Fe:N}} B - \mu_D \gamma_D R_{D_{Fe:N}} D + I_{Fe} - O_{Fe} \end{split}$$

steady state solutions

$$\begin{array}{ll} N_{B}^{*} = & \frac{\kappa_{NB}m_{B}}{\mu_{B}-m_{B}} \\ P_{B}^{*} = & \frac{\kappa_{PB}m_{B}}{\mu_{B}-m_{B}} \\ Fe_{B}^{*} = & \frac{\kappa_{FeB}m_{B}}{\mu_{B}-m_{B}} \\ P_{D}^{*} = & \frac{\kappa_{FeB}m_{B}}{\mu_{B}-m_{D}} \\ Fe_{D}^{*} = & \frac{\kappa_{FeD}m_{D}}{\mu_{D}-m_{D}} \\ \phi_{PN} = & 1 + \frac{m_{D}DR_{NP_{D}}}{R_{NP_{B}}I_{N}^{*}} + \frac{O_{P}-O_{N}R_{NP_{B}}}{R_{NP_{B}}I_{N}^{*}} \\ \phi_{FeN} = & 1 + \frac{m_{D}DR_{NFe_{D}}}{R_{NFe_{B}}I_{N}^{*}} + \frac{O_{Fe}-O_{N}R_{NFe_{B}}}{R_{NFe_{B}}I_{N}^{*}} \end{array}$$

1. What are the key traits and trade-offs of diazotrophs?

not nitrogen limit versus lower growth rate than non-diazotrophs

2. What are the environmental control of diazotroph biogeography?

diazotrophs can only exist where supply rate of Fe and P relative to N are higher than the non-diazotrophs N requirements

diazotrophs can exist if

$$\frac{\text{supply rate of iron}}{\text{(supply rate of nitrate)(non-diazotroph Fe:N)}} = \phi_{FeN} = \frac{S_{Fe}}{S_N \Omega_{Fe:N_B}} > 1$$

$$\frac{\text{supply rate of phosphate}}{\text{(supply rate of nitrate)(non-diazotroph P:N)}} = \phi_{PN} = \frac{S_P}{S_N \Omega_{P:N_B}} > 1$$

$$\phi_{FeN} = \frac{S_{Fe}}{S_N \Omega_{Fe:N_R}}$$

$$\phi_{PN} = \frac{S_P}{S_N \Omega_{P:N_R}}$$

$$\phi_{FeN} = \frac{S_{Fe}}{S_N \Omega_{Fe:N_R}}$$

$$\phi_{PN} = \frac{S_P}{S_N \Omega_{P:N_B}}$$

model diazotroph
biogeography
(nitrogen fixation)

- 1. What are the key traits and trade-offs of diazotrophs?
 - not nitrogen limit versus lower growth rate than non-diazotrophs
- 2. What are the environmental control of diazotroph biogeography?
 - nutrient supply ratio: diazotrophs can only exist where supply rate of Fe and P relative to N are higher than the non-diazotrophs N requirements
- 3. How will climate change alter than environmental control?

simulated nutrient supply ratios

$$\phi_{FeN} = \frac{S_{Fe}}{S_N \Omega_{Fe:N_P}}$$

Supply of nitrate reduced

Supply of iron potentially increases

$$\phi_{FeN} = \frac{S_{Fe}}{S_N \Omega_{Fe:N_B}}$$

simulated nitrogen fixation

simulated nutrient supply ratios

$$\phi_{FeN} = rac{S_{Fe}}{S_N \Omega_{Fe:N_B}}$$

1. What are the key traits and trade-offs of diazotrophs?

not nitrogen limit versus lower growth rate than non-diazotrophs

2. What are the environmental control of diazotroph biogeography?

nutrient supply ratio:

diazotrophs can only exist where supply rate of Fe and P relative to are higher than the non-diazotrophs N requirements

3. How will climate change alter than environmental control?

decrease in nitrate supply will lead to increase in regions with excess Fe supply

- Theoretical basis has been used to explain diazotroph distribution in Atlantic (e.g. Schlosser et al, 2014)
- Covers diverse set of diazotrophs

 (ongoing work to understand finer scale, role of oxygen etc)
- Probably other controls important too...
 (but could some of those previously suggested just be correlated, not causative)
- Theory relates to ratio of nutrient supply rates NOT ratio of nutrient concentrations

OUTLINE

- Trait based approach to modeling phytoplankton
- Phytoplankton response to climate change
 - diazotrophs
 - ocean acidification
- Final thoughts (with naïve ideas on application to HABS)

meta-analysis of OA experiments (Jeff Morris, U Alabama)

Dutkiewicz et al, in review

meta-analysis of OA experiments

increased growth rate under enhanced CO₂

decreased growth rate under enhanced CO₂

Randomly assign CO₂ response to model phytoplankton within bounds suggested by meta-analysis

Dutkiewicz et al, in review

Dutkiewicz et al, in review

1. Identify key traits and trade-offs

2. Understand the specific environmental control that selects for those traits

3. Understand how that environmental control changes with time

- 4. Caveats: phytoplankton types response is determined by change in fitness <u>relative</u> to competitors
 - multiple stressors may affect different traits differently

NAÏVE THOUGHTS ON HOW TO USE THIS APPROACH FOR HABS

1. Identify key traits and trade-offs of HABs

- toxin production is there an evolutionary reason?
 - in there a cost?

massive blooms - maximize(growth-loss)?

- exclude others (shading)?

- 1. Identify key traits and trade-offs complex! toxicity?
- 2. Understand the specific environmental control that selects for those traits could we use knowledge of environments to help identify the main traits?

- Identify key traits and trade-offs
 complex!
 Is there a fundamental trait, or are each HAB species too specific?
- 2. Understand the specific environmental control that selects for those traits could we use knowledge of environments to help identify the main traits?
- 3. Understand how that environmental control changes with time need understanding of controls first!

- Identify key traits and trade-offs
 complex!
 Is there a fundamental trait, or are each HAB species too specific?
- 2. Understand the specific environmental control that selects for those traits could we use knowledge of environments to help identify the main traits?
- 3. Understand how that environmental control changes with time need understanding of controls first!
- 4. Caveats: phytoplankton types response is determined by change in fitness <u>relative</u> to competitors need competition experiments (HAB vs non-HAB)
 - multiple stressors may affect different traits differently need multi-factorial experiments

Initialize model with 78 phytoplankton types with random assignments of traits

(nutrient-acquisition ability, optimum light, optimum temperature)

all initialized *Prochlorococcus*

environment selects which survive

MODEL CAN ALSO SUGGESTS
WHAT TRAITS ARE NOT
OPTIMAL

NAÏVE THOUGHTS ON HOW TO USE THIS APPROACH FOR HABS

mixotroph (fixed elemental ratios)

mixotroph (variable Fe quota)

allowed to fill quota by different strategies:

useful when Fe:other nutrient supply imbalanced

Follows and Dutkiewicz, Ann Rev Mar Sci, 2011

