

# Long-term changes in microalgae communities on the Russian East coast with emphasis on toxic and bloom forming species

Tatiana Yu. Orlova, <u>Polina A. Kameneva</u>, Tatiana V. Morozova A.V. Zhirmunsky Institute of Marine Biology FEB RAS

#### A.V. Zhirmunsky Institute of marine biology Far eastern branch of the Russian academy of sciences



#### HABs MONITORING since 1999:

- Monitor HAB populations (plankton/benthos)
- Reveal new sources of toxicity (new species/cycts)
- Early warning / mechanism

## Location of the study area



#### Temperature and salinity characteristics of the

study area

# Average surface temperature from -20°C to +25 °C

Ice coverage from December till March (Peter the Great bay)
Slightly lower salinity - 33,7—34,3‰

# Representatives of cold and warm waters





Thalassiosira nordenskioeldii



Ostreopsis cf ovata

### Surface water temperature rise 1982-2006



#### Reasons for faster warming

- Nearby land warming, linked to climate changes and anthropogenic pollution (Trenberth et al,. 2007)
- The effect of Yangtze river runoff (Zhang et al,...
   2007)
- Activation of warm currents (Kuroshio Current, Tsushima Current)

(Adrianov, 2014)

# General changes and patterns of microalgae communities

- Changes in abundance of microalgae (Karenia, Pseudo-nitzschia)
- New bloom-forming species (Heterosigma akazhiwo, Pseudogaptolina birgeri)
- Changes in species composition (Sceletonema)
- Warm-loving species in temperate zone (Ostreopsis)
- Non-diatom component increases
- New toxic species

### Changes in abundance of microalgae

Karenia brevis and Karenia mikimotoi

First record – 1987

Maximum concentrations:

Karenia brevis – 3.5x10<sup>3</sup> cell/L in 1993

Karenia mikimotoi – 1x10<sup>6</sup>cell/L in 1990

Decrease in abundance since the early 2000

Pseudo-nitzschia

11 species recorded

Maximum concentration 11 x10<sup>6</sup> cells/L in 1992

Since 2012 no more then 2 x10<sup>6</sup>cells/L

#### New bloom-forming species







Heterosigma akashiwo bloom in coastal waters of Vladivostok since 2010 (ITX)

### New bloom-forming species







Pseudohaptolina birgeri 275 million cells/L (Chl a - 20,77 mg/L) Sea water t -1,8°C (ITX)

# New bloom-forming species





Oscilatoriales – lithophylic cyanobacteria

#### Changes in species composition







Skeletonema marinoi



Skeletonema japonicum



Form blooms average - 2x106 cells/L

# Warm-loving species in temperate zone

Studies of epiphytic dinoflagellates on macrophytes from Peter the Great Bay revealed the presence of *Ostreopsis cf. ovata* (species are known as producers of putative palytoxin and its analogue, ovatoxins).







(Selina et al., 2014)

Until recently, it was thought that the genera *Gambierdiscus*, *Coolia* and *Ostreopsis* are endemics of tropical and subtropical areas.

During the last decade these genera were found in the temperate areas of the northern and southern hemispheres.

Real expansion of *O. ovata* and *O. siamensis* was observed in the Mediterranean.





Geographical distribution of the *Ostreopsis* ribotypes registered in Russian waters. Identical ribotypes are depicted in one color. (Efimova et al., 2013)

#### Abundance of Ostreopsis spp.



# Diatom and non-diatom dynamic



#### New toxic species

Domoic acid (ASP) concentrations were studied in 20 *Pseudo-nitzschia* strains isolated from

Peter the Great Bay during 2008-2013. The highest DA content was found in stationary-phase *P. multistriata* and *P. calliantha* strains at

DA cell quota varying between 0.1 and 0.53 pg/cell which is comparable to the values reported for other strains of these species (Trainer et al., 2012).

| Strain | Species            | Origin of strain    | Date of<br>Isolation<br>mm/dd/yyyy | Domoic acid concentration*           |                        |                |
|--------|--------------------|---------------------|------------------------------------|--------------------------------------|------------------------|----------------|
|        |                    |                     |                                    | Concentration per cell volume, ng/ml | Cell quota,<br>pg/cell | Day in culture |
| PMS-12 | P.<br>multistriata | Peter the Great bay | 10/02/2012                         | 22.56±2.35                           | 0.171                  | 34             |
| PMS-12 | P.<br>multistriata | Peter the Great bay | 10/02/2012                         | 10.037±1.96                          | 0.529                  | 41             |
| PMS-12 | P.<br>multistriata | Peter the Great bay | 10/02/2012                         | 4.49±0.6                             | 0.08                   | 60             |
| PC-12  | P. calliantha      | Peter the Great bay | 10/02/2012                         | 8.32±1.69                            | 0.441                  | 36             |
| PC-12  | P. calliantha      | Peter the Great bay | 10/02/2012                         | 3.7±1.39                             | 0.246                  | 43             |

Domoic acid concentrations were determined by Enzyme Linked Immunosorbent Assay (kit "ASP direct cELISA", Biosense Laboratories, Norway)

#### New toxic species

#### Problem of DSP (okadaic acid and its analogues)



# Qualitative composition of DSTs in mussels



Tatiana Yu. Orlova, Polina A. Kameneva, Inna V. Stonik, Tatiana V. Morozova, Kseniya V. Efimova, Leslie Moore, Bich-Thuy L. Eberhart, Mark L. Wells, and Vera L. Trainer // JSR in press

#### New vector of DSP

#### Prorocentrum foraminosum







In culture of P.foraminosum containing 3500-5000 cell/mL

**DTX-1** was determined 8.4 ± 2.4 pg/cell 22.46 ± 17.6 ng/mL of media

#### Conclusion

- Long-term changes in microalgae communities on the Russian East coast are observed
- There is a decreasing dynamic of diatom component of microalgae communities, which substituted by the non-diatom component
- 3. New boom forming species were detected for the study area and new toxin producing species were revealed