Daily and seasonal ocean acidification extremes during the twenty-first century **Lester Kwiatkowski & James Orr** Lester.kwiatkowski@lsce.ipsl.fr ### The context: what is the temporal variability of ocean acidification? #### - Seasonal OA variability can be similar magnitude to expected mean changes this century - How this variability responds to climate change is crucial to projecting marine impacts #### Bopp et al., Biogeosciences (2013) ### ESM projections of changing carbonate chemistry seasonality | Model name | Model abbreviation | Simulations | | | | | | | |---|-------------------------------|-------------|--------|---------|-------------|----------|--|--| | | | piControl | RCP8.5 | 1pctCO2 | esmFixClim1 | esmFdbk1 | | | | Community Earth
System Model
version 1
biogeochemistry | CESM1-BGC ^{1,2} | | | × | | * | | | | Centre National de
Recherches
Météorologiques
Earth System Model
Coupled Model
version 5 | CNRM-ESM1 ³ | Lo. | | * | * | × | | | | Geophysical Fluid
Dynamics Laboratory
Earth System Model
version 2G | GFDL-ESM2G ⁴ | * | 2 | * | * | × | | | | Geophysical Fluid
Dynamics Laboratory
Earth System Model
version 2M | GFDL-
ESM2M ⁴ | × | , | | | | | | | Hadley Centre Global
Environment Model
version 2- Earth
System | HadGEM2-ES ³ | * | * | * | * | * | | | | Institut Pierre Simon
Laplace Coupled
Model version 5A-LR | IPSL-CM5A-
LR ⁶ | | , | * | | | | | | Institut Pierre Simon
Laplace Coupled
Model version 5A-
MR | IPSL-CM5A-
MR ⁶ | , | * | * | * | * | | | | Max-Planck-Institut
für Meteorologie
Earth System Model
LR version | MPI-ESM-LR ⁷ | Y | , | * | | | | | | Max-Planck-Institut
für Meteorologie
Earth System Model
MR version | MPI-ESM-MR ⁷ | * | , | * | * 4 | * | | | - 9 CMIP5 ESMs with ocean biogeochemistry - Surface ocean carbonate chemistry computed from monthly T, C_T , A_T , S, P, Si mocsy package - Output fields regridded to a 1° x 1° regular grid - Focus on biologically important [H $^+$], pH, Ω_{arag} Kwiatkowski & Orr, NCC (2018) ### Methods: computing seasonal amplitude changes - Projected seasonal amplitude evaluated for RCP8.5 (2006-2100) relative to historical (1990-1999) - Seasonal amplitude anomalies determined by subtracting cubic spline fit from time series in each grid cell ### Methods: computing seasonal amplitude changes - Projected seasonal amplitude evaluated for RCP8.5 (2006-2100) relative to historical (1990-1999) - Seasonal amplitude anomalies determined by subtracting cubic spline fit from time series in each grid cell ### Global seasonal amplitude anomalies in RCP8.5 [H⁺] seasonality \uparrow 81±16% ### Global seasonal amplitude anomalies in RCP8.5 ### Global seasonal amplitude anomalies in RCP8.5 ### Spatially contrasting amplitude changes #### 21st century change in seasonality (%) - [H⁺] n greater in high lats (147% in the Arctic) - pH typically greater in low and mid-lats - $\Omega_{\text{arag}} \stackrel{\checkmark}{\lor} > 40\%$ in the temperate-to-polar regions - But there is \uparrow of up to 30% in the subtropics ### Seasonal [H⁺] amplification but pH attenuation? #### 21st century change in seasonality (%) Counterintuitive, but a result of the log scale of pH d pH = $$\frac{-1}{2.303} \frac{d[H^+]}{[H^+]}$$ [H+] = Annual mean [H+] d [H+] = Seasonality of [H+] $[H^+]$ increase $(117\pm3\%) > d[H^+]$ increase $(81\pm16\%)$ Kwiatkowski & Orr, NCC (2018) ### Determining the drivers of seasonality change #### 1. Idealised simulations (ultimate geochemical and climate drivers): **1pctCO2**: CO₂ increases from 280 ppm by 1%/yr until 4xCO₂ (total effect) esmFixClim1: CO₂ of 1pctCO2 but radiative module sees constant CO₂ of 280 ppm (geochemical effect) esmFdbk1: CO₂ constant at 280 ppm but radiative module sees CO₂ of 1pctCO2 (radiative/climate effect) #### 2. First order Taylor series deconvolutions (proximate $A_T/C_T/T/S$ drivers): $$\Delta y = \left(\frac{\partial y}{\partial C_T}\right) \Delta C_T + \left(\frac{\partial y}{\partial A_T}\right) \Delta A_T + \left(\frac{\partial y}{\partial T}\right) \Delta T + \left(\frac{\partial y}{\partial S}\right) \Delta S$$ ### Idealised simulations: geochemical effect generally dominates Changes in the 1pctCO2 very similar to of RCP8.5 Indicates CO_2 is the dominant driver of seasonality changes in RCP8.5 and not CH_4 , O_3 , aerosols etc Validates the use of *esmFixClim1* and *esmFdbk1* simulations to partition radiative and geochemical influences ### Idealised simulations: geochemical effect generally dominates Geochemical effect dominates, except for Ω_{arag} where radiative effect dominates in the subtropics where buffer capacity is greatest Kwiatkowski & Orr, NCC (2018) ### Taylor series deconvolutions: proximate drivers of seasonality change $$\Delta y = \left(\frac{\partial y}{\partial C_T}\right) \Delta C_T + \left(\frac{\partial y}{\partial A_T}\right) \Delta A_T + \left(\frac{\partial y}{\partial T}\right) \Delta T + \left(\frac{\partial y}{\partial S}\right) \Delta S$$ [H⁺] and Ω_{arag} (independently) Partial differentials/ represent the change in variables synchronous with any numerically - **GFDL-ESM2M** model (representative of multi-model mean) - Reproduces changes in seasonal amplitude of [H $^+$] and Ω_{arag} to within <<1 % ### Deconvolutions: proximate drivers of [H⁺] seasonality change #### [H⁺] Amplification (high lats)- residual of opposing increases in $(\partial H^+/\partial C_T)\Delta C_T$ and $(\partial H^+/\partial A_T)\Delta A_T$ that dominates Amplification (low lats)- A_T and C_T terms compensate and increases in $(\partial H^+/\partial T) \Delta T$ dominate ### Deconvolutions: proximate drivers of Ω_{arag} seasonality change Ω_{arag} Attenuation-decline in C_T term ((Ω_{arag}/C_T) ΔC_T) outweighs increase in A_T term ((Ω_{arag}/A_T) ΔA_T). Amplification- little change in A_T term, C_T term increases due to a larger change in ΔC_T ### Similar diurnal changes to chemistry variability? #### Diurnal chemistry variability (Ischia, Mediterranean sea) | | рН | ΔрН | [H ⁺]
nmol/kg | Δ[H ⁺]
nmol/kg | Ω_{arag} | $\Delta\Omega_{arag}$ | |-----------------|------|-------------|------------------------------|-------------------------------|-----------------|-----------------------| | Control | 8.38 | 0.09 | 4.17 | 0.86 | 6.00 | 0.84 | | Vent | 8.08 | 0.10 | 8.32 | 1.95 | 3.67 | 0.67 | | Diurnal Amp/Att | | 11 % | | 1 22% | | \$ 20% | Kerrison et al., 2011 CO₂ vent sites show similar changes in diurnal chemistry as CMIP5 seasonal projections #### **Conclusions** - CMIP5: seasonal [H⁺] amplification, pH attenuation, and Ω_{arag} amplification and attenuation geochemical and climatic drivers - Amplified [H⁺] seasonality impacts → exposure to acidosis - Low latitudes, earlier/later exposure in summer/winter - High latitudes, earlier/later exposure when photosynthesis low/high - Generally attenuated Ω_{arag} seasonality impacts \Rightarrow exposure to low Ω_{arag} - exacerbated/dampened impacts in summer highs /winter lows - opposite in the subtropics (amplification projected) - Diurnal variability to be similarly affected as seasonal variability? ### Thanks, any questions? Lester.kwiatkowski@lsce.ipsl.fr ### Additional slides ### Zonal mean changes in seasonal cycles 1990s (black) 2090s (colours) # Model evaluation against an observational climatology Taylor diagrams for seasonal variations in H⁺ and Ω_{arag} . Colours designate individual models, shapes designate the space-time components. The total seasonal component (x), computed from monthly maps of temporal deviations (monthly means minus annual mean), is separated into 2 orthogonal components: zonal mean (triangles) and zonal anomaly (pluses). Observational reference = Takahashi et al. (2014). ## Model evaluation against an observational climatology The total temporal variance of H^+ and Ω_{arag} seasonal cycles divided into zonal means (green) and zonal anomalies (yellow) - Models overestimate the zonal-mean component of H⁺ temporal variance - Models encompass observed variance for Ω_{arag} ### Deconvolutions: proximate drivers of seasonality change Separation of C_T and A_T terms into sensitivities and amplitude changes for [H⁺] and Ω_{arag} in the RCP8.5 simulation of the GFDL-ESM2M model. The zonal mean sensitivities of a, $[H^+]$ and b, Ω_{arag} to C_T and A_T shown as means for 2006-2015 and 2091-2100 along with corresponding zonal mean ΔC_T and ΔA_T taken between monthly maximum and minimum for c, $[H^+]$ and d, Ω_{arag} . ### ESM projections of changing carbonate chemistry seasonality - Calcifying species can experience depressed <u>calcification</u>, <u>growth and survival</u> <u>rates</u> at lower calcium carbonate saturation state (Ω) (e.g. Kroeker et al., 2010; Albright et al., 2016; Kwiatkowski et al., 2016a, 2016b). - Teleost fish and marine invertebrates, ion exchange is reduced by extracellular acidosis or high external [H⁺], depressing <u>protein synthesis and metabolic rates</u> (e.g. Langenbuch et al., 2006; Pörtner, 2008). - Physiological and behavioural functioning is also sensitive to pCO₂, with high external concentrations impairing olfactory discrimination (e.g. Munday et al., 2009) and predator-prey responses (e.g. Watson et al., 2014; Watson et al., 2017). ### ESM projections of changing carbonate chemistry seasonality Chemistry seasonal cycles result of different physical and biological processes. pH seasonality largely driven by T in low lats and photosynthesis/respiration in high lats Ω seasonality largely driven by the variability of alkalinity and DIC with less influence of T Seasonal variability can be a similar order of magnitude to changes expected over the 21st century Kwiatkowski & Orr, NCC (2018)