Daily and seasonal ocean acidification extremes during the twenty-first century

Lester Kwiatkowski & James Orr

Lester.kwiatkowski@lsce.ipsl.fr

The context: what is the temporal variability of ocean acidification?

- Seasonal OA variability can be similar magnitude to expected mean changes this century
- How this variability responds to climate change is crucial to projecting marine impacts

Bopp et al., Biogeosciences (2013)

ESM projections of changing carbonate chemistry seasonality

Model name	Model abbreviation	Simulations						
		piControl	RCP8.5	1pctCO2	esmFixClim1	esmFdbk1		
Community Earth System Model version 1 biogeochemistry	CESM1-BGC ^{1,2}			×		*		
Centre National de Recherches Météorologiques Earth System Model Coupled Model version 5	CNRM-ESM1 ³	Lo.		*	*	×		
Geophysical Fluid Dynamics Laboratory Earth System Model version 2G	GFDL-ESM2G ⁴	*	2	*	*	×		
Geophysical Fluid Dynamics Laboratory Earth System Model version 2M	GFDL- ESM2M ⁴	×	,					
Hadley Centre Global Environment Model version 2- Earth System	HadGEM2-ES ³	*	*	*	*	*		
Institut Pierre Simon Laplace Coupled Model version 5A-LR	IPSL-CM5A- LR ⁶		,	*				
Institut Pierre Simon Laplace Coupled Model version 5A- MR	IPSL-CM5A- MR ⁶	,	*	*	*	*		
Max-Planck-Institut für Meteorologie Earth System Model LR version	MPI-ESM-LR ⁷	Y	,	*				
Max-Planck-Institut für Meteorologie Earth System Model MR version	MPI-ESM-MR ⁷	*	,	*	* 4	*		

- 9 CMIP5 ESMs with ocean biogeochemistry
- Surface ocean carbonate chemistry computed from monthly T, C_T , A_T , S, P, Si mocsy package
- Output fields regridded to a 1° x 1° regular grid
 - Focus on biologically important [H $^+$], pH, Ω_{arag}

Kwiatkowski & Orr, NCC (2018)

Methods: computing seasonal amplitude changes

- Projected seasonal amplitude evaluated for RCP8.5 (2006-2100) relative to historical (1990-1999)
- Seasonal amplitude anomalies determined by subtracting cubic spline fit from time series in each grid cell

Methods: computing seasonal amplitude changes

- Projected seasonal amplitude evaluated for RCP8.5 (2006-2100) relative to historical (1990-1999)
- Seasonal amplitude anomalies determined by subtracting cubic spline fit from time series in each grid cell

Global seasonal amplitude anomalies in RCP8.5

[H⁺] seasonality \uparrow 81±16%

Global seasonal amplitude anomalies in RCP8.5

Global seasonal amplitude anomalies in RCP8.5

Spatially contrasting amplitude changes

21st century change in seasonality (%)

- [H⁺]
 n greater in high lats (147% in the Arctic)
 - pH typically greater in low and mid-lats
- $\Omega_{\text{arag}} \stackrel{\checkmark}{\lor} > 40\%$ in the temperate-to-polar regions
 - But there is \uparrow of up to 30% in the subtropics

Seasonal [H⁺] amplification but pH attenuation?

21st century change in seasonality (%)

Counterintuitive, but a result of the log scale of pH

d pH =
$$\frac{-1}{2.303} \frac{d[H^+]}{[H^+]}$$
 [H+] = Annual mean [H+] d [H+] = Seasonality of [H+]

 $[H^+]$ increase $(117\pm3\%) > d[H^+]$ increase $(81\pm16\%)$

Kwiatkowski & Orr, NCC (2018)

Determining the drivers of seasonality change

1. Idealised simulations (ultimate geochemical and climate drivers):

1pctCO2: CO₂ increases from 280 ppm by 1%/yr until 4xCO₂

(total effect)

esmFixClim1: CO₂ of 1pctCO2 but radiative module sees constant CO₂ of 280 ppm

(geochemical effect)

esmFdbk1: CO₂ constant at 280 ppm but radiative module sees CO₂ of 1pctCO2

(radiative/climate effect)

2. First order Taylor series deconvolutions (proximate $A_T/C_T/T/S$ drivers):

$$\Delta y = \left(\frac{\partial y}{\partial C_T}\right) \Delta C_T + \left(\frac{\partial y}{\partial A_T}\right) \Delta A_T + \left(\frac{\partial y}{\partial T}\right) \Delta T + \left(\frac{\partial y}{\partial S}\right) \Delta S$$

Idealised simulations: geochemical effect generally dominates

Changes in the 1pctCO2 very similar to of RCP8.5

Indicates CO_2 is the dominant driver of seasonality changes in RCP8.5 and not CH_4 , O_3 , aerosols etc

Validates the use of *esmFixClim1* and *esmFdbk1* simulations to partition radiative and geochemical influences

Idealised simulations: geochemical effect generally dominates

Geochemical effect dominates, except for Ω_{arag} where radiative effect dominates in the subtropics where buffer capacity is greatest

Kwiatkowski & Orr, NCC (2018)

Taylor series deconvolutions: proximate drivers of seasonality change

$$\Delta y = \left(\frac{\partial y}{\partial C_T}\right) \Delta C_T + \left(\frac{\partial y}{\partial A_T}\right) \Delta A_T + \left(\frac{\partial y}{\partial T}\right) \Delta T + \left(\frac{\partial y}{\partial S}\right) \Delta S$$
 [H⁺] and Ω_{arag} (independently)

Partial differentials/ represent the change in variables synchronous with any numerically

- **GFDL-ESM2M** model (representative of multi-model mean)
- Reproduces changes in seasonal amplitude of [H $^+$] and Ω_{arag} to within <<1 %

Deconvolutions: proximate drivers of [H⁺] seasonality change

[H⁺]

Amplification (high lats)- residual of opposing increases in $(\partial H^+/\partial C_T)\Delta C_T$ and $(\partial H^+/\partial A_T)\Delta A_T$ that dominates

Amplification (low lats)- A_T and C_T terms compensate and increases in $(\partial H^+/\partial T) \Delta T$ dominate

Deconvolutions: proximate drivers of Ω_{arag} seasonality change

 Ω_{arag}

Attenuation-decline in C_T term ((Ω_{arag}/C_T) ΔC_T) outweighs increase in A_T term ((Ω_{arag}/A_T) ΔA_T).

Amplification- little change in A_T term, C_T term increases due to a larger change in ΔC_T

Similar diurnal changes to chemistry variability?

Diurnal chemistry variability (Ischia, Mediterranean sea)

	рН	ΔрН	[H ⁺] nmol/kg	Δ[H ⁺] nmol/kg	Ω_{arag}	$\Delta\Omega_{arag}$
Control	8.38	0.09	4.17	0.86	6.00	0.84
Vent	8.08	0.10	8.32	1.95	3.67	0.67
Diurnal Amp/Att		11 %		1 22%		\$ 20%

Kerrison et al., 2011

CO₂ vent sites show similar changes in diurnal chemistry as CMIP5 seasonal projections

Conclusions

- CMIP5: seasonal [H⁺] amplification, pH attenuation, and Ω_{arag} amplification and attenuation geochemical and climatic drivers
- Amplified [H⁺] seasonality impacts → exposure to acidosis
 - Low latitudes, earlier/later exposure in summer/winter
 - High latitudes, earlier/later exposure when photosynthesis low/high
- Generally attenuated Ω_{arag} seasonality impacts \Rightarrow exposure to low Ω_{arag}
 - exacerbated/dampened impacts in summer highs /winter lows
 - opposite in the subtropics (amplification projected)
- Diurnal variability to be similarly affected as seasonal variability?

Thanks, any questions?

Lester.kwiatkowski@lsce.ipsl.fr

Additional slides

Zonal mean changes in seasonal cycles 1990s (black) 2090s (colours)

Model evaluation against an observational climatology

Taylor diagrams for seasonal variations in H⁺ and Ω_{arag} . Colours designate individual models, shapes designate the space-time components. The total seasonal component (x), computed from monthly maps of temporal deviations (monthly means minus annual mean), is separated into 2 orthogonal components: zonal mean (triangles) and zonal anomaly (pluses). Observational reference = Takahashi et al. (2014).

Model evaluation against an observational climatology

The total temporal variance of H^+ and Ω_{arag} seasonal cycles divided into zonal means (green) and zonal anomalies (yellow)

- Models overestimate the zonal-mean component of H⁺ temporal variance
- Models encompass observed variance for Ω_{arag}

Deconvolutions: proximate drivers of seasonality change

Separation of C_T and A_T terms into sensitivities and amplitude changes for [H⁺] and Ω_{arag} in the RCP8.5 simulation of the GFDL-ESM2M model.

The zonal mean sensitivities of a, $[H^+]$ and b, Ω_{arag} to C_T and A_T shown as means for 2006-2015 and 2091-2100 along with corresponding zonal mean ΔC_T and ΔA_T taken between monthly maximum and minimum for c, $[H^+]$ and d, Ω_{arag} .

ESM projections of changing carbonate chemistry seasonality

- Calcifying species can experience depressed <u>calcification</u>, <u>growth and survival</u> <u>rates</u> at lower calcium carbonate saturation state (Ω) (e.g. Kroeker et al., 2010; Albright et al., 2016; Kwiatkowski et al., 2016a, 2016b).
- Teleost fish and marine invertebrates, ion exchange is reduced by extracellular acidosis or high external [H⁺], depressing <u>protein synthesis and metabolic rates</u> (e.g. Langenbuch et al., 2006; Pörtner, 2008).
- Physiological and behavioural functioning is also sensitive to pCO₂, with high external concentrations impairing olfactory discrimination (e.g. Munday et al., 2009) and predator-prey responses (e.g. Watson et al., 2014; Watson et al., 2017).

ESM projections of changing carbonate chemistry seasonality

Chemistry seasonal cycles result of different physical and biological processes.

pH seasonality largely driven by T in low lats and photosynthesis/respiration in high lats

 Ω seasonality largely driven by the variability of alkalinity and DIC with less influence of T

Seasonal variability can be a similar order of magnitude to changes expected over the 21st century

Kwiatkowski & Orr, NCC (2018)