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Motivation

● Global deoxygenation is a crucial issue with severe 
consequences to coastal ecosystems (Levin[2018],Breitburgh et 
al[2018])

● Eastern boundary upwelling systems are key players in global 
biogeochemical cycles due to their intense biological productivity 
and their connection with the oligotrophic open ocean. 

● Climate change will bring about changes in physical and 
biogeochemical driving factors in EBUS. 
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● ROMS-CROCO hydrodynamic 
model

● Wind forced North-South 
periodic channel

● 300 km x 300 km
● 500 m x,y grid spacing
● Uniform bathymetric profile
● Initialized from rest (U=V=0)
● Temperature, Salinity initial 
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 Based on Sekerci and 
Petrovskii [2015]  

Biogeochemical model



 Based on Sekerci and 
Petrovskii [2015]

 Added nutrient input N(ρ) 
to Phyto growth term:  

k
1
,B – Max growth rates

k
2
,c

1
 – Half-saturation constants

Biogeochemical model



Simulations



Simulations

k1=1;k2=0



Simulations

k1=1;k2=0

k1=1;k2=0.5



Simulations

k1=1;k2=0

k1=1;k2=0.5

k1=2;k2=0.5



Simulations

k1=1;k2=0

k1=1;k2=0.5

k1=2;k2=0.5

90 days (9 wind 
cycles)
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90 days (9 wind 
cycles)

40 days (4 wind 
cycles) + 50 
days with no 
wind



Enhanced P growth + 90 days Cyclic Wind vs. 
MOUTON 2007 campaign (Rossi et al[2013])
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Enhanced P growth + 90 days Cyclic Wind

Time and alongshore averaged O
2

 Offshore gradient of surface O
2
 as upwelling induced P growth and O

2
 production
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Enhanced P growth + 90 days Cyclic Wind

Time and alongshore averaged O
2

 Offshore gradient of surface O
2
 as upwelling induced P growth and O

2
 production

 Subsurface low O
2
 pocket appears as O

2
 poor waters are upwelled

mmol O m-3
Distance to coast (km)
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γ ~ 0 contains 
mean O2 grad.
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|γ| >> 0 range 
contains high O2 
concentrations

γ ~ 0 contains 
mean O2 grad.

Distance to coast (km)
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vertical 
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mixing remove 
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 Net production (Production 
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2
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Coastal O
2
 budget 

(0<x<50 km, z < 140 m)

Enhanced P 
growth + Wind 

shutdown



Wind shutdown (ECS) increases O
2
 enrichment rate (by 25%) since the decline in advective sink 

is larger than the decline in net production

40 d cyclic + shutdown

90 d cyclic

40 d cyclic + shutdown

90 d cyclic
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Decrease in P growth causes mean loss of O
2
 in coastal box 

Net production rates fall but remain positive. 
Physical sink also decreases but less than biological source

Limited
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Conclusions
● We used an idealized coupled physical-biogeochemical model to 

study dissolved O2 in coastal upwelling systems

● Lateral transport by turbulence moves O2 rich waters offshore

● Upwelling shutdown increases O2 enrichement in the coastal 
zone

● Phytoplankton growth limitation causes O2 loss in the coastal 
zone

● Future work will look at including wind drop off and current 
feedbacks to the atmosphere 
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O2PZ Model equations



O2PZ Model Parameters



Nitrate  vs Density



O2 Lateral Fluxes



Enhanced Phytoplankton Growth

Sensitivity to Wind Regime 

Distance to coast (km)

mmol O m-3

Distance to coast (km)

The O
2
 offshore gradient is intensified when the wind shuts downs as 

turbulence winds down and O
2
 offshore transport is slowed down
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