Climate vulnerability and resilience in the most valuable North American fisheries

Arnault Le Bris

Centre for Fisheries Ecosystems Research

Fisheries & Marine Institute of Memorial University of Newfoundland

Acknowledgements

Le Bris A. et al. 2018. Climate vulnerability and resilience in the most valuable US fishery. Proceeding of National Academy of Sciences USA, 115 (8) 1831-1836. doi.org/10.1073/pnas.1711122115.

Co-authors

Gulf of Maine Research Institute: Andrew Pershing, Kathy Mills

Andrew Allyn, Justin Schuetz

University of Maine: Rick Wahle, Yong Chen

NOAA – Earth System Research Laboratory: Mike Alexander, James Scott

Gulf of Maine

NSF Coastal SEES

Intro - Global climate change and fisheries

Maximum fishery revenue potential

Intro - Global climate change and fisheries

Intro - A lobster tale: the American lobster fishery

Intro - A lobster tale: the American lobster fishery

Intro - A lobster tale: Gulf of Maine and southern New England

Lobster in the US managed in two stocks: Gulf of Maine and southern New England

Intro - A lobster tale: Gulf of Maine and southern New England

Intro – a lobster tale: Gulf of Maine and southern New England

Exceptional warming in the northeast US and in the Gulf of Maine

SST anomalies in the Gulf of Maine

0.1 0 -0.1 -0.2

Global SST trends between 2004 to 2014.

Dotted line: warming trends since start of time series ~ 0.04°C yr⁻¹

Red line: warming trends over the last 10 years ~0.23°C yr⁻¹

0.2

Intro - A lobster tale: Gulf of Maine and southern New England

Difference in temperature

Exceptional warming in the northeast US

Lobster predators

Landings of Atlantic cod in the Gulf of Maine

Intro - A lobster tale: Gulf of Maine and southern New England

Epizootic Shell disease

Prevalence of shell disease on lobster in commercial traps sampling (ASMFC 2015)

State: Area:	New York 612-613	Connecticut & New York 611	Rhode Island		Massachusetts			New Hampshire	Maine			
			616	539	537-538	521	514	513	513	512	511	467
1992	F - A - A -	0.6%	-77		178 1 1 1 1 1						1205.	
1993		0.5%										
1994		1.0%										
1995		1.0%										
1996		1.6%	0%	0.3%								
1997		2.3%	0%	4.3%								
1998		2.1%	0.2%	19.0%								
1999		3.9%	0.8%	20.3%	0.4							
2000		4.6%	2.2%	21.8%	9.4%	0%	3.7%	19 1				
2001		5.9%	2.2%	22.6%	11.6%	2.2%	6.5%					
2002		9.7%	3.1%	30.6%	25.9%	0.4%	5.5%	0.2%				
2003		13.0%	3.1%	24.9%	29.0%	0.9%	3.9%	0.3%	<0.05%	<0.05%	<0.05%	0%
2004	19.4%	6.2%	2.6%	27.9%	11.5%	0.5%	2.3%	0.2%	<0.05%	<0.05%	<0.05%	0%
2005	*5.8%	8.7%	2.3%	26.2%	14.3%	0.4%	2.3%	0.1%	<0.05%	<0.05%	<0.05%	0%
2006	na	na	1.7%	27.6%	23.9%	0%	1.2%	0.1%	<0.05%	<0.05%	<0.05%	0%
2007	na	9.1%	5.1%	21.8%	24.6%	0.6%	3.7%	0.1%	<0.05%	<0.05%	<0.05%	0%
2008	0%	7.9%	1.6%	**28.9%	26.7%	0.2%	2.4%	0.1%	< 0.05%	<0.05%	<0.05%	0%
2009	*8.2%	14.3%	na	**28.5%	32.7%	0.2%	1.1%	0.1%	<0.05%	<0.05%	<0.05%	0%
2010	*31.1%	8.2%	na	33.9%	21.9%	0.3%	2.6%	0.1%	0.1%	<0.05%	<0.05%	0%
2011	26.9%	15.0%	na	29.5%	37.7%	0.2%	4.2%	0.3%	0.2%	<0.05%	<0.05%	0%
2012	0%	5.2%	na	34.0%	18.6%	0.6%	3.1%	0.5%	0.3%	<0.05%	<0.05%	0%
2013	na	na	na	+14.5%	37.2%	0.9%	5.5%		0.6%	0.1%	< 0.05%	< 0.05%

Difference in harvest strategies

Gulf of Maine

- Minimum size limit since 1870. Nowadays: 83 mm CL
- Maximum size limit since 1917. Nowadays: 128 mm CL
- V-notching mandatory since 1910. High buy in.

Southern New England

- Nowadays: minimum size limit of 86 mm CL
- No max size limit until 2008, since then 140 mm CL
- No mandatory V-notching. Low buy in

Research questions and objectives

- 1. What were the main drivers of the contrasting productivities observed in the Gulf of Maine and southern New England lobster fisheries? (i.e. Temperature, management, shell disease, predators)
- 2. Will the Gulf of Maine experience a similar fate as southern New England if warming continues?

Objectives:

- Develop a simple <u>simulation model</u> that integrates climate, population dynamics, and fisheries dynamics to reconstruct past trajectories of the two stocks.
- Use the model to evaluate the role of the different factors
- Use the model to project future trends in the fisheries
- Identifying harvest strategies that confer resilience to climate vulnerable fisheries

Model parameterization – Climate and population dynamics

Model parameterization - Climate and population dynamics

Model simulations - validation

Inputs:

- Abundance at length in 1984 - Monthly temperatures

- Monthly landings

Model simulations - temperature

Model simulations – harvest strategies (HS)

Model simulations – other factors

Model projections – Climate forecasts

- Temperature projections from CMIP5 ensemble model RCP8.5, business as usual.
- 1°x 1° resolution. Anomalies relative to 1984-2014 climate
- For each time series, 3 products: mean, 5th and 95th percentiles

ANN ENSMN tos for Northeast U.S. Continental Shelf with 10 year running mean (20thC + rcp85)

www.esrl.noaa.gov/psd/ipcc/

Model projections

Climate forecasts

- 5^{th} Percentile Warm ~ 0.03 °C .y⁻¹
- Mean
- 95th Percentile Hot ~0.05°C .y⁻¹

Climate forecasts

- 5th Percentile Warm ~0.03°C .y⁻¹
- Mean
- 95th Percentile Hot ~0.05°C .y⁻¹

Model projections

Conclusions

American lobster fisheries in the US

- Preservation of larger reproductive lobster prepared the Gulf of Maine lobster fishery to capitalize on favorable ecosystem conditions
 - Record breaking landings
- Lack of measures to preserve large reproductive lobster in Southern New England precipitated the warming induced recruitment failure
 - Fishery collapse

Increasing resilience of fisheries to climate change

Locally adapted proactive conservation measures can help capitalize on gains and minimize losses caused by climate change

Winners can win more and losers don't have to loose as much!

Thank you! Questions?

Please do not hesitate to contact me:

arnault.lebris@mi.mun.ca

Tel: (709) 778 0482

www.arnaultlebris.com

Le Bris A. et al. 2018. Climate vulnerability and resilience in the most valuable US fishery. *Proceeding of National Academy of Sciences USA*, 115 (8) 1831-1836. doi.org/10.1073/pnas.1711122115.

Centre for Fisheries Ecosystems Research

Fisheries & Marine Institute of Memorial University of Newfoundland