Projecting climate change impacts on regional marine ecosystems using OSMOSE Ricardo Oliveros-Ramos & Yunne-Jai Shin Workshop 10: Intercomparison of fisheries and marine ecosystem models Main assumption: Size-based predation #### **PROCESSES** | 1 | Spatial distribution | |---|-----------------------------| | 2 | Natural mortality | | 3 | Explicit predation | | 4 | Growth <i>or</i> Starvation | | 5 | Fishing mortality | | | | OSMOSE (Shin and Cury 2001, 2004) is a multispecies Individualbased model (IBM) which focuses on fish species. www.osmose-model.org #### OSMOSE IS A STOCHASTIC MODEL OSMOSE: Object-oriented Simulator of Marine biOdiverSity Exploitation #### **OSMOSE** - OSMOSE simulates "schools". - Each school share a set of properties: species, age, length, and its characterized by its spatial position and abundance. #### **OSMOSE** Fish will eat each other if they can! Size-based predation + spatial co-ocurrence. #### **OSMOSE forcings:** Species distribution maps and plankton #### **OSMOSE** parameters **Fishing mortality** 8 species explicitly modelled: 312 parameters Oliveros-Ramos et al. 2017 #### E2E model: ROMS-PISCES-OSMOSE Reproduce observed data (1992-2008): time series of landings, biomass, catchat-length #### **Calibration of OSMOSE** #### **Parameterization** - Fishing mortality (F) - F average estimated for all harvested species. - Annual deviates, discrete steps. - Seasonal variability: variable between years, estimated from landings distribution. - Selectivity models used for harvested species: logistic, normal and lognormal. Selectivities are estimated for species with cath-at-age information, fixed for the others. - Larval mortality (L) - L average estimated for all species - Annual deviates, splines. - Seasonal variability: periodic, only used for anchovy. #### Calibration results - Monthly catches Observations Oliveros-Ramos et al. 2017 #### Calibration results — Catch at age/length Oliveros-Ramos et al. 2017 - Observations - Model #### Calibration results - Species biomass Observations Oliveros-Ramos et al. 2017 https://CRAN.R-project.org/package=calibrar #### **OSMOSE: Simulation inputs** How to produce the model inputs for the period 2009-2100? Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-209 Manuscript under review for journal Geosci. Model Dev. Discussion started: 6 October 2017 © Author(s) 2017. CC BY 4.0 License. # A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0 Derek P. Tittensor^{1,2}, Tyler D. Eddy^{2,3}, Heike K. Lotze², Eric D. Galbraith^{4,5}, William Cheung³, Manuel Barange^{6,7}, Julia L. Blanchard⁸, Laurent Bopp⁹, Andrea Bryndum-Buchholz², Matthias Büchner¹⁰, Catherine Bulman¹¹, David A. Carozza¹², Villy Christensen¹³, Marta Coll^{14,15}, John P. Dunne¹⁶, Jose A. Fernandes^{7,17}, Elizabeth A. Fulton^{11,18}, Alistair J. Hobday^{11,18}, Veronika Huber¹⁰, Simon Jennings^{19,20,21}, Miranda Jones³, Patrick Lehodey²², Jason S. Link²³, Steve Mackinson¹⁹, Olivier Maury^{24,25}, Susa Niiranen²⁶, Ricardo Oliveros-Ramos²⁷, Tilla Roy^{9,28}, Jacob Schewe¹⁰, Yunne-Jai Shin^{25,29}, Charles A. Stock¹⁶, Philip J. Underwood¹, Jan Volkholz¹⁰, James R. Watson²⁶, Nicola D. Walker¹⁹ #### **OSMOSE** forecast ## **CMIP5** inputs Resolution: 1ºx1º Time horizon: 1950-2005 (historical) 2006-2100 (RCP 2.6, 4.5, 6.0 and 8.5) Resolution: 1ºx1º Time horizon: 1950-2005 (historical) 2006-2100 (RCP 2.6, 4.5, 6.0 and 8.5) #### Global Climate Models: 2006-2100 - Low resolution - No coastal dynamics - Inter-model variability **Downscaling** - Statistical - Dynamical **Bias correction** ## Statistical downscaling + bias correction: # Statistical downscaling: forecast ## Statistical downscaling: results SST Reynolds OI SeaWIFS + MODIS ## **CMIP5** inputs Resolution: 1ºx1º Time horizon: 1950-2005 (historical) 2006-2100 (RCP 2.6, 4.5, 6.0 and 8.5) Statistical downscaling for the Peruvian region (1/6ºx1/6º) Resolution: 1ºx1º Time horizon: 1950-2005 (historical) 2006-2100 (RCP 2.6, 4.5, 6.0 and 8.5) Statistical downscaling for the Peruvian region (1/6ºx1/6º) Dynamic downscaling (Gevaudan et al., this conference) 2000-2010 (historical) 2011-2100 (RCP 2.6 and 8.5) ## Spatial distribution modeling: methods - Shape restricted generalize additive models - Occurrence data: - Presence records in the Peruvian coast between 1985 and 2008. - Absence records (pseudo-absence where it is known that the anchovy is not distributed). - Environmental data: - SST (°C) Reynolds - SSS (ups) SODA - NPP (mg/m³) SeaWIFS + MODIS - Variables we can get from future models. ## Shifts in spatial distribution: RCP 2.6 ## Shifts in spatial distribution: RCP 8.5 ## Shifts in spatial distribution: all RCPs ## Impact on distribution and productivity ## Changes in anchovy biomass - Inclusion of the impact of O₂ in the simulations. - Downscaling for oxygen failed (oxycline) - Dynamical downscaling available, new statistical downscaling seems to work. #### **Limiting factors** Lujan-Paredes et al., in prep. - Comparison with dynamical downscaling. - Bias correction still needed. - Test other downscaling approaches: k-nearest neighbors, simple interpolation. - Dynamical downscaling - Better integration with fish models (plankton) - Validation of plankton - Keep looking at the past: - New OSMOSE model for Northern Humboldt - New fisheries sub-module (OSMOSE v4) - New calibration 1958-2008 (Espinoza et al. in prep, PISCES model): longer historical analysis - Keep looking at the past: - More detail on Humboldt Squid (stage-based spatial distribution, new predators – sperm whale, Hammerhead shark) - More detail on anchoveta (length-based spatial distribution, predation configuration, new predators) - Additional species: Land-based predators (birds and mammals), other squids. - More detail on fisheries (e.g. 3 fisheries for anchovy). #### **Acknowledments** FISHERIES & MARINE ECOSYSTEM # Thanks!