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STD of monthly SSTa is large along the PTA along the subarctic-
subtropical gyre boundary with relatively strong SST gradient

In this talk, | will ---
- review the studies about the relation between the monthly SSTa along

this PTA and climate variabilities (PDO & NPGO)
- introduce my works on the SSTa along this PTA



PDO & NPGO

Pacific Decadal OSC|IIat|on (PDO) North Pacific Gyre Oscillation (NPGO)
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The SSTa correlation maps of the two dominant modes of SSTa variability.
“An overview of Pacific Climate Variability” (Di Lorenzo, Schneider et al.)

4+ The large SSTa variability along the PTA is largely explained
by the two dominant modes of SSTa in the extratropical N. Pac.

How well do we know about the variability?



Framework for Pacific Climate Variability
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“An overview of Pacific Climate Variability” (Di Lorenzo, Schneider et al.)

By using PDO & NPGO as the keys, and
combining the studies to date based on observation, numerical model, etc.,

we can now draw the framework, by which we may understand the overall
picture of the complicated Pacific Climate Variability

Most of these studies were published after 2002

—>




Pacific Decadal Oscillation (PDO

4+ Mantua et al. (1997) defined PDO as the EOF 1st mode
of the monthly SSTa in the North Pacific (20°N-70°N)
- originally used to discuss the climate impact on Salmon Production

(a) SST and SLP regressed on the PDO index

PDO index values: January 1900 - January 2017
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http://research.jisao.washington.edu/pdo/ Mantua et al. (1997)



Sea Level Pressure anomaly (SLPa) regressed on PDO suggests that,

Aleutian Low <=> Westerly Wind <=> Ekman Transport

(a) SST and SLP regressed on the PDO index
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Fig. Contribution of u’rpo * VT estimated
from a simplified SST budget
by Chhak et al. (2009)

Mantua et al. (1997)

This first order explanation is confirmed quantitatively to some extent
by using a numerical model & a simplified budget analysis
(Chhak et al., 2009).



“The Pacific Decadal Oscillation, Revisited”
Newman et al. (2016, JPO)

+The PDO is , but is instead the result of
that span tropics and extratropics.
= The assessment of PDO-related regional climate impacts
should accounts for the effects of these different processes.

Summarys
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FIG. 14. Summary figure of the basic processes involved in the PDO.

- Schneider & Cornuelle (2005) suggested that
as
as stochastic forcing & ENSO
while it is negligible on interannual time scales



Effects of the Rossby waves
on Heat Content (0-400m)

Taguchi et al. (2017) shows that
» T moves westward along the Kuroshio Extension
- the heaving of the thermocline related to the Rossby waves
» T moves eastward along the subarctic frontal zone
- generated by wave-related V’ near the western boudary
and passively advected by mean U

Ishii analysis
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Bidecadal variability and
the 18.6-year modulation of tide

Osafune et al. iZO]éiL & submitted)
_5 show another possible mechanism,

astward moving heat content anomaly along the PTA,

==>=which is related to a dynamical response of the ocean.




Bidecadal Variability

+ Climate signal has a bidecadal peak (Man & Park, 1996)

+ Bidecadal climate variability is prominent in the North Pacific
(e.g. Cook et al., 1997; Minobe et al., 2002)

- PDO has bidecadal component,
although its spectral peak is not significant in OBS

c) Paleo. Recons.
Sidecadal
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Our hypothesis and its background

axis
Moon
23.4°+5°
equatorial
plane
Farth Fig. Energy conversion rate f the

equipotential

surface barotropic tides to internal waves

(Tanaka et al., 2007)

- The inclination of the lunar orbit varies in 18.6-year period.
Diurnal and semi-diurnal tides are modulated largely (Godin, 1972).

- Large amount of diurnal tidal energy dissipates, and induces strong vertical
mixing around steep topographies in the subarctic North Pacific, such as the
Kuril Straits (Tanaka et al., 2010) the Aleutian Passes (Foreman et al., 2007).

- This localized strong mixing controls ocean circulation and water-mass
formation in the North Pacific (e.g. Nakamura et al., 2006)

The 18.6-year modulation of localized strong tidal mixing
could have an impact on climate (Yasuda et al., 2006).



Verifying this hypothesis is a main topic in our project from 2015.

MEXT KAKENHI INNOVATIVE STUDY

Overarching Goals

Explore vertical mixing in western North Pacific &
impacts on circulation, biogeochemistry, climate and
ecosystem:

Deep Circulation in the N.P.

(quantify upwelling through vertical mixing)
Processes to sustain ocean ecosystem

(quantify transport of nutrients to ecosystem)
Long-period variability and forecast of ocean/climate/
fisheries

(Reproduce bi-decadal and related period variability
and their mechanisms)

| will introduce my works in this line,
which investigated the impact of the 18.6-year modulation of
mixing on large-scale SST though ocean-only mechanism



Data & Method

Ocean State Estimation (ESTOQC) : Control Run (CTL
. developed by JAMSTEC/K7
. model : GFDL/MOM3 (quasi-global, 1°x 1°x45 levels) 5o
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and atmospheric forcings,

which provide the best time-trajectory fit L —

‘ to the observation
- TS (Ensembles ver. 3(including ARGO) + Mirai RV independent dataset)

OISST. AVISO SSH anomaly

. Climatology TS (WOAObD; for parameter tuning by Green’s Function Method)

Numerical Experiment with 18.6-year modulation : Nodal Run (NODAL)

. initial condition & atmospheric forcings are same with CTL

. oscillating vertical diffusivity related to rough topography in 18.6-year period



Results



ASST = SSTnodal — SSTC’EI
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ASST @ 40°N

DEC
NOV
oCT
SEP
AUG
JUuL
JUN

MAY | I f ; : Bl | | 11

Wil 1l a g Fig. Correlation between

o | 5 |3 ASST & 18.6-year cycle
120E 140E 160E 180 160W 140W 120W

0.3 0.4 0.5 0.6 0.7 0.8

Feb Aug

_ u I |
160E 180 160W 140W 120W 140E 160E 180 160W 140w

Fig. Time-longitude diagram of ASST along 40°N in Feb & Aug

- Eastward moving 18.6-year signal has a clear seasonality,
and Is clear in winter, but not iIn summer.



13.6-year ASSTfeb (NODAL-CTL)
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Fig. Amplitude and lag for the 18.6-year ASSTreb estimated by regressing on 18.6-year cycle

+ 18.6-year period ASST moves eastward along the PTA

v

+ This ASST significantly contributes to the actual bidecadal SSTa
near the center of action of the PDO

- ASST is inphase with the actual SSTa
- Amplitude of ASST is about 20% of that of the actual SSTa



Impact on PDOFreb
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Fig. Regression of SSTa in Feb on PC1 for observed SSTa in Feb

o Spatial structure seems to be improved in NODAL
=




Dynamics of the eastward motion
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Fig.
Reconstructed
snhapshots of
18.6-year Au, Av,
AT at 100 m

+ Large scale ocean circulation is distorted, and AT approximately
reflects the meandering of the eastward current along the PTA

+ Au & Av is coupled with the subsurface A o,
corresponding to the intermediate layer thickness anomaly (nhot shown)

= The low-mode (2nd or higher) baroclinic long Rossby waves
moving eastward along the PTA plays a substantial role

: What is essential in the western boundary region is

not AT near the surface but subsurface A p



Summary & Discussion

4 The 18.6-year modulation of tide-induced mixing in limited region can influence
the large-scale SST, and possibly the PDO.

4 Eastward moving low-mode (2nd or higher) baroclinic long Rossby waves
play a role in the mechanism of this possible influence.

- moving speed of T anomaly is slower than the passive advection

- T anomaly is accompanied by subsurface density & circulation anomaly

v This mechanism can work once density anomaly is generated,
regardless of the cause and the periodicity.

- Clear bidecadal density anomaly has been observed in the subarctic region
(Osafune & Yasuda, 2006; 2010).

» Does this mechanism actually work along the PTA?
- We investigated data from Argo float array (Kouketsu’s Poster 12386)
- | am analyzing ESTOC to evaluate the contribution on PDO

» This mechanism may help understanding the bidecadal variations not only

physical properties, but also in biogeochemical properties (e.g. AOU, nutrient),
plankton biomass, and marine resources

(e.g. Ono et al., 2001; Tadokoro et al., 2009; Parker et al.,1995)

- We are planing to investigate ESTOC and conduct similar impact experiment
(biogeochemical component of ESTOC is introduced by Doi’s Poster 12392)
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