Bycatch-Saving Technological Change

Kathleen Segerson, U. Connecticut
Dale Squires, NOAA
Niels Vestergaard, U. Southern Denmark
PICES La Paz, April 2018

Three Purposes

- 1. Demonstrate a way of thinking about bycatchsaving technical change
 - increased selectivity
- 2. Maximum economic yield (MEY) with technical change that increases catchability of target species and reduces bycatch
- Will sketch out a basic model, skip most steps, then show MEY under various conditions
- 3. What incentivizes research & development for bycatch-saving technical change?

Bycatch-Saving Technical Change is Largely Endogenous

- Endogenous technical change
 - Source of technology & research and development (R&D) within fishery sector
 - Hence R&D responds to incentives
 - Incentives created by direct regulation, incentivebased regulation, technology policy
 - Bycatch species typically endogenous
- Exogenous technical change
 - Source of technology and R&D from outside of fishery sector
 - Both exogenous and endogenous, but IT exogenous

Notation...(1)

- Y(t): Target species catch
- B(t): Bycatch species catch
- S(t): Target species stock (biomass)
- Z(t): Bycatch species stock (biomass, currently excluded from model)
- $A_{\gamma}(t)$: State of technology for production of target species (part of catchability coefficient q)
- A_B(t): State of technology for production of bycatch species (part of catchability coefficient q)
- E(t): Effort
- F(S(t)): Target species surplus production growth function

Notation...(2)

- p > 0 = constant per unit price at which harvest of the target species can be sold
- $c \ge 0$ = constant per unit cost of effort
- $v \ge 0$ = constant cost per unit of bycatch
 - If no bycatch penalties (costs), then v = 0

Some Fundamental Equations

- (1) Target species catch equation
 Y(t)=h[S(t), AY(t), E(t)] = A_Y(t)E(t)S(t)
- (2) Bycatch species catch equation
 B(t)=b[A_B(t),E(t))] = A_B(t)E(t)
- Work in progress to add Z(t)
 - (optimal control problem becomes very complex)
- (3) Stock dynamics equation
- S''(t)=F(S(t)-Y(t))
- " denotes time derivative

Relative Bycatch

- Relative bycatch B(t)/Y(t) can be reduced by technical change that:
- (1) reduces bycatch, i.e. A''_B(t) < 0
- (2) increases target catch, i.e. A''_v(t) > 0

Research & Development (R&D)

- R = Relative amount of R&D for target species,
 where 0 ≤ R ≤ 1
- 1 − R = relative amount of R&D for bycatch species
- Technology stocks evolve over time as:

$$A''_{Y}(t) = \eta_{Y} R(t) A_{Y}(t)$$

$$A''_{B}(t) = \eta_{B} [\mathbf{1} - \mathbf{R}(t)] A_{B}(t)$$

where $\eta_{\gamma}(\eta_{B})$ represents probability that allocation of research effort to increasing target species productivity (reducing bycatch) will successfully increase $A_{\nu}(t)$ [$A_{R}(t)$] by one unit.

Discounted Present Value of Profits

$$\int_0^\infty [pY(t) - c(t)E(t) - vB(t)]e^{-\delta t}dt, \qquad (7)$$

Profit

where δ denotes the instantaneous discount rate.

Sole Owner (Society) Optimization Problem

 Choose E(t) and R(t) to maximize profits subject to growth of resource stock and other constraints

Hamiltonian for Optimal Control Problem

$$H = [pY - cE - vB]e^{-\delta t} + \gamma [F(S) - Y] + \theta_T [\eta_T R A_T] + \theta_B [-\eta_T R A_B],$$

Profit

Constraints

where γ , θ_T , and θ_B are Lagrange multipliers or shadow values from the constraints

Solution Yields Three Cases for R (Relative R&D)

$$R = \begin{cases} 1 & if & \theta_T \eta_T A_T > -\theta_B \eta_B A_B \\ 0 & if & \theta_T \eta_T A_T < -\theta_B \eta_B A_B \\ ? & if & \theta_T \eta_T A_T = -\theta_B \eta_B A_B \end{cases}.$$

- For each of these three cases consider:
- (1) MEY stock
- (2) Fundamental equation of renewable resource economics
 - Solution to maximizing Hamiltonian
 - Gives optimal E(t), Y(t), B(t), S(t), Z(t)
- (3) Figure in terms of target species

R(t) ≡ 1: All R&D for Target Species & Bycatch Technology Constant...(1)

$$F'(S) + \frac{[F(S) + \eta_T S]}{S[pSA_T(t) - (c + vA_B^0)]} + \frac{[c + vA_B^0]}{S[pSA_T(t) - (c + vA_B^0)]} = \delta$$

Marginal

Productivity

Target

Resource

Stock

Marginal Stock

Effect

Marginal

Technology

Effect

Discount

Rate

R(t) ≡ 1: All R&D for Target Species & Bycatch Technology Constant...(2)

$R(t) \equiv 0$: All R&D to Reduce Batch, Target Species Technology Constant

Bottom Line...(1)

- Target species technical change lowers target MEY stock compared to no target species technical change
 - Endogenous and exogenous technical change
 - MEY stock < MSY stock, not MEY stock > MSY stock
- Accounting for bycatch species lowers target catch(because higher cost) & increases target species stock compared to without

Bottom Line...(2)

- Bycatch-saving technological change allows more target catch (because lower costs) & lower target MEY stock compared to without
- Accounting for bycatch and technical change for both target and bycatch species gives MEY stock lower than traditional MEY stock & can be lower than MSY stock

How to Incentivize Bycatch R&D?...(1)

Price effect

- Direct regulation and incentive-based regulation change relative prices and hence costs that incentivize R&D for bycatch reducing technical change
- Innovate to lower now higher costs of target species production

Market effect

- Larger markets make profitable R&D for bycatch reducing technical change
- Example: FAD bycatch research
- Dolphin bycatch innovation

How to Incentivize Bycatch R&D?...(2)

- Direct regulation
 - Performance standards (quotas, limits)
 - Technology standards (required gear & operating requirements)
- Incentive-based policy instruments
 - Increase bycatch and target prices and costs so R&D to innovate and save costs
- Research on pollution, energy conservation, terrestrial conservation, climate, water shows both direct and incentive-based regulation can be important to induce technical change

How to Incentivize Bycatch R&D?...(3)

- Technology policy
 - Private R&D usually too low for social optimum because private sector does not enjoy all benefits of innovation
 - Public subsidizes R&D to achieve social optimum
 - In fisheries, often see public-private R&D
 - Circle hooks replace J hooks, eco-FADs, buoy gear for swordfish

Thanks!.....Questions?